Timezone: »
Novelty detection, a fundamental task in machine learning, has drawn a lot of recent attention due to its wide-ranging applications and the rise of neural approaches. In this work, we present a general framework for neural novelty detection that centers around a multivariate extension of the univariate quantile function. Our framework unifies and extends many classical and recent novelty detection algorithms, and opens the way to exploit recent advances in flow-based neural density estimation. We adapt the multiple gradient descent algorithm to obtain the first efficient end-to-end implementation of our framework that is free of tuning hyperparameters. Extensive experiments over a number of real datasets confirm the efficacy of our proposed method against state-of-the-art alternatives.
Author Information
Jingjing Wang (University of Waterloo)
Sun Sun (National Research Council)
Yaoliang Yu (University of Waterloo)
More from the Same Authors
-
2022 Poster: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Geometric attacks on batch normalization »
Amur Ghose · Apurv Gupta · Yaoliang Yu · Pascal Poupart -
2022 Spotlight: Optimality and Stability in Non-Convex Smooth Games »
Guojun Zhang · Pascal Poupart · Yaoliang Yu -
2018 Poster: Deep Homogeneous Mixture Models: Representation, Separation, and Approximation »
Priyank Jaini · Pascal Poupart · Yaoliang Yu -
2017 Poster: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2017 Spotlight: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
Zhan Shi · Xinhua Zhang · Yaoliang Yu -
2013 Poster: On Decomposing the Proximal Map »
Yao-Liang Yu -
2013 Oral: On Decomposing the Proximal Map »
Yao-Liang Yu -
2013 Poster: Polar Operators for Structured Sparse Estimation »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2013 Poster: Better Approximation and Faster Algorithm Using the Proximal Average »
Yao-Liang Yu -
2012 Poster: Convex Multi-view Subspace Learning »
Martha White · Yao-Liang Yu · Xinhua Zhang · Dale Schuurmans -
2012 Poster: Accelerated Training for Matrix-norm Regularization: A Boosting Approach »
Xinhua Zhang · Yao-Liang Yu · Dale Schuurmans -
2012 Poster: A Polynomial-time Form of Robust Regression »
Yao-Liang Yu · Özlem Aslan · Dale Schuurmans -
2010 Poster: Relaxed Clipping: A Global Training Method for Robust Regression and Classification »
Yao-Liang Yu · Min Yang · Linli Xu · Martha White · Dale Schuurmans -
2009 Poster: A General Projection Property for Distribution Families »
Yao-Liang Yu · Yuxi Li · Dale Schuurmans · Csaba Szepesvari