Timezone: »
Time series constitute a challenging data type for machine learning algorithms, due to their highly variable lengths and sparse labeling in practice. In this paper, we tackle this challenge by proposing an unsupervised method to learn universal embeddings of time series. Unlike previous works, it is scalable with respect to their length and we demonstrate the quality, transferability and practicability of the learned representations with thorough experiments and comparisons. To this end, we combine an encoder based on causal dilated convolutions with a novel triplet loss employing time-based negative sampling, obtaining general-purpose representations for variable length and multivariate time series.
Author Information
Jean-Yves Franceschi (Sorbonne Université)
Aymeric Dieuleveut (Ecole Polytechnique, IPParis)
Martin Jaggi (EPFL)
More from the Same Authors
-
2021 : Interpreting Language Models Through Knowledge Graph Extraction »
Vinitra Swamy · Angelika Romanou · Martin Jaggi -
2021 : Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation »
Futong Liu · Tao Lin · Martin Jaggi -
2021 : Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation »
Futong Liu · Tao Lin · Martin Jaggi -
2021 : WAFFLE: Weighted Averaging for Personalized Federated Learning »
Martin Beaussart · Mary-Anne Hartley · Martin Jaggi -
2022 : Data-heterogeneity-aware Mixing for Decentralized Learning »
Yatin Dandi · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2022 : Quadratic minimization: from conjugate gradients to an adaptive heavy-ball method with Polyak step-sizes »
Baptiste Goujaud · Adrien Taylor · Aymeric Dieuleveut -
2022 : Decentralized Stochastic Optimization with Client Sampling »
Ziwei Liu · Anastasiia Koloskova · Martin Jaggi · Tao Lin -
2022 : Towards Provably Personalized Federated Learning via Threshold-Clustering of Similar Clients »
Mariel A Werner · Lie He · Sai Praneeth Karimireddy · Michael Jordan · Martin Jaggi -
2022 : Diversity through Disagreement for Better Transferability »
Matteo Pagliardini · Martin Jaggi · François Fleuret · Sai Praneeth Karimireddy -
2023 Poster: MultiMoDN—Multimodal, Multi-Task, Interpretable Modular Networks »
Vinitra Swamy · Malika Satayeva · Jibril Frej · Thierry Bossy · Thijs Vogels · Martin Jaggi · Tanja Käser · Mary-Anne Hartley -
2023 Poster: Hardware-Efficient Transformer Training via Piecewise Affine Operations »
Atli Kosson · Martin Jaggi -
2023 Poster: Faster Causal Attention Over Large Sequences Through Sparse Flash Attention »
Matteo Pagliardini · Daniele Paliotta · Martin Jaggi · François Fleuret -
2023 Poster: Collaborative Learning via Prediction Consensus »
Dongyang Fan · Celestine Mendler-Dünner · Martin Jaggi -
2023 Poster: Random-Access Infinite Context Length for Transformers »
Amirkeivan Mohtashami · Martin Jaggi -
2022 : Scalable Collaborative Learning via Representation Sharing »
Frédéric Berdoz · Abhishek Singh · Martin Jaggi · Ramesh Raskar -
2022 Poster: Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2022 Poster: Beyond spectral gap: the role of the topology in decentralized learning »
Thijs Vogels · Hadrien Hendrikx · Martin Jaggi -
2021 : [S11] Interpreting Language Models Through Knowledge Graph Extraction »
Vinitra Swamy · Angelika Romanou · Martin Jaggi -
2021 : Q&A with Martin Jaggi »
Martin Jaggi -
2021 : Learning with Strange Gradients, Martin Jaggi »
Martin Jaggi -
2021 Poster: Federated-EM with heterogeneity mitigation and variance reduction »
Aymeric Dieuleveut · Gersende Fort · Eric Moulines · Geneviève Robin -
2021 Poster: Breaking the centralized barrier for cross-device federated learning »
Sai Praneeth Karimireddy · Martin Jaggi · Satyen Kale · Mehryar Mohri · Sashank Reddi · Sebastian Stich · Ananda Theertha Suresh -
2021 Poster: Preserved central model for faster bidirectional compression in distributed settings »
Constantin Philippenko · Aymeric Dieuleveut -
2021 Poster: RelaySum for Decentralized Deep Learning on Heterogeneous Data »
Thijs Vogels · Lie He · Anastasiia Koloskova · Sai Praneeth Karimireddy · Tao Lin · Sebastian Stich · Martin Jaggi -
2020 Poster: Ensemble Distillation for Robust Model Fusion in Federated Learning »
Tao Lin · Lingjing Kong · Sebastian Stich · Martin Jaggi -
2020 Poster: Practical Low-Rank Communication Compression in Decentralized Deep Learning »
Thijs Vogels · Sai Praneeth Karimireddy · Martin Jaggi -
2020 Poster: Debiasing Averaged Stochastic Gradient Descent to handle missing values »
Aude Sportisse · Claire Boyer · Aymeric Dieuleveut · Julie Josse -
2020 Poster: Model Fusion via Optimal Transport »
Sidak Pal Singh · Martin Jaggi -
2019 Poster: PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization »
Thijs Vogels · Sai Praneeth Karimireddy · Martin Jaggi -
2019 Poster: Communication trade-offs for Local-SGD with large step size »
Aymeric Dieuleveut · Kumar Kshitij Patel -
2018 Poster: COLA: Decentralized Linear Learning »
Lie He · Yatao Bian · Martin Jaggi -
2018 Poster: Sparsified SGD with Memory »
Sebastian Stich · Jean-Baptiste Cordonnier · Martin Jaggi -
2018 Poster: Training DNNs with Hybrid Block Floating Point »
Mario Drumond · Tao Lin · Martin Jaggi · Babak Falsafi -
2017 Poster: Safe Adaptive Importance Sampling »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Spotlight: Safe Adaptive Importance Sampling »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2017 Poster: Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems »
Celestine Dünner · Thomas Parnell · Martin Jaggi -
2015 Poster: On the Global Linear Convergence of Frank-Wolfe Optimization Variants »
Simon Lacoste-Julien · Martin Jaggi -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Communication-Efficient Distributed Dual Coordinate Ascent »
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan -
2013 Workshop: Greedy Algorithms, Frank-Wolfe and Friends - A modern perspective »
Martin Jaggi · Zaid Harchaoui · Federico Pierucci