`

Timezone: »

 
Poster
Offline Contextual Bayesian Optimization
Ian Char · Youngseog Chung · Willie Neiswanger · Kirthevasan Kandasamy · Oak Nelson · Mark Boyer · Egemen Kolemen · Jeff Schneider

Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #149

In black-box optimization, an agent repeatedly chooses a configuration to test, so as to find an optimal configuration. In many practical problems of interest, one would like to optimize several systems, or "tasks", simultaneously; however, in most of these scenarios the current task is determined by nature. In this work, we explore the "offline" case in which one is able to bypass nature and choose the next task to evaluate (e.g. via a simulator). Because some tasks may be easier to optimize and others may be more critical, it is crucial to leverage algorithms that not only consider which configurations to try next, but also which tasks to make evaluations for. In this work, we describe a theoretically grounded Bayesian optimization method to tackle this problem. We also demonstrate that if the model of the reward structure does a poor job of capturing variation in difficulty between tasks, then algorithms that actively pick tasks for evaluation may end up doing more harm than good. Following this, we show how our approach can be used for real world applications in science and engineering, including optimizing tokamak controls for nuclear fusion.

Author Information

Ian Char (Carnegie Mellon University)
Youngseog Chung (Carnegie Mellon University)
Willie Neiswanger (Carnegie Mellon University)
Kirthevasan Kandasamy (Carnegie Mellon University)
Oak Nelson (Princeton Plasma Physics Lab)
Mark Boyer (Princeton Plasma Physics Lab)
Egemen Kolemen (Princeton Plasma Physics Lab)
Jeff Schneider (Carnegie Mellon University)

More from the Same Authors

  • 2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
    Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré
  • 2021 : Synthetic Benchmarks for Scientific Research in Explainable Machine Learning »
    Yang Liu · Sujay Khandagale · Colin White · Willie Neiswanger
  • 2021 : BATS: Best Action Trajectory Stitching »
    Ian Char · Viraj Mehta · Adam Villaflor · John Dolan · Jeff Schneider
  • 2021 : Reinforcement Learning for Autonomous Driving »
    Jeff Schneider · Jeff Schneider
  • 2021 Poster: Beyond Pinball Loss: Quantile Methods for Calibrated Uncertainty Quantification »
    Youngseog Chung · Willie Neiswanger · Ian Char · Jeff Schneider
  • 2019 : Coffee + Posters »
    Benjamin Caine · Renhao Wang · Nazmus Sakib · Nana Otawara · Meha Kaushik · elmira amirloo · Nemanja Djuric · Johanna Rock · Tanmay Agarwal · Angelos Filos · Panagiotis Tigkas · Donsuk Lee · Wootae Jeon · Nikita Jaipuria · Pin Wang · Jinxin Zhao · Liangjun Zhang · Ashutosh Singh · Ershad Banijamali · Mohsen Rohani · Aman Sinha · Ameya Joshi · Ching-Yao Chan · Mohammed Abdou · Changhao Chen · Jong-Chan Kim · eslam mohamed · Matt OKelly · Nirvan Singhania · Hiroshi Tsukahara · Atsushi Keyaki · Praveen Palanisamy · Justin Norden · Micol Marchetti-Bowick · Yiming Gu · Hitesh Arora · Shubhankar Deshpande · Jeff Schneider · Shangling Jui · Vaneet Aggarwal · Tryambak Gangopadhyay · Qiaojing Yan
  • 2019 : Morning Coffee Break & Poster Session »
    Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger
  • 2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
    Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing
  • 2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
    Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing