Timezone: »
Instrumental variable analysis is a powerful tool for estimating causal effects when randomization or full control of confounders is not possible. The application of standard methods such as 2SLS, GMM, and more recent variants are significantly impeded when the causal effects are complex, the instruments are high-dimensional, and/or the treatment is high-dimensional. In this paper, we propose the DeepGMM algorithm to overcome this. Our algorithm is based on a new variational reformulation of GMM with optimal inverse-covariance weighting that allows us to efficiently control very many moment conditions. We further develop practical techniques for optimization and model selection that make it particularly successful in practice. Our algorithm is also computationally tractable and can handle large-scale datasets. Numerical results show our algorithm matches the performance of the best tuned methods in standard settings and continues to work in high-dimensional settings where even recent methods break.
Author Information
Andrew Bennett (Cornell University)
Nathan Kallus (Cornell University)
Tobias Schnabel (Microsoft Research)
More from the Same Authors
-
2022 Panel: Panel 3C-5: Biologically-Plausible Determinant Maximization… & What's the Harm? ... »
Bariscan Bozkurt · Nathan Kallus -
2022 Poster: Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2022 Poster: The Implicit Delta Method »
Nathan Kallus · James McInerney -
2022 Poster: What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment »
Nathan Kallus -
2021 Workshop: Causal Inference Challenges in Sequential Decision Making: Bridging Theory and Practice »
Aurelien Bibaut · Maria Dimakopoulou · Nathan Kallus · Xinkun Nie · Masatoshi Uehara · Kelly Zhang -
2021 Poster: Risk Minimization from Adaptively Collected Data: Guarantees for Supervised and Policy Learning »
Aurelien Bibaut · Nathan Kallus · Maria Dimakopoulou · Antoine Chambaz · Mark van der Laan -
2021 Poster: Control Variates for Slate Off-Policy Evaluation »
Nikos Vlassis · Ashok Chandrashekar · Fernando Amat · Nathan Kallus -
2021 Poster: Post-Contextual-Bandit Inference »
Aurelien Bibaut · Maria Dimakopoulou · Nathan Kallus · Antoine Chambaz · Mark van der Laan -
2020 Workshop: Consequential Decisions in Dynamic Environments »
Niki Kilbertus · Angela Zhou · Ashia Wilson · John Miller · Lily Hu · Lydia T. Liu · Nathan Kallus · Shira Mitchell -
2020 : Spotlight Talk 4: Fairness, Welfare, and Equity in Personalized Pricing »
Nathan Kallus · Angela Zhou -
2020 Poster: Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning »
Nathan Kallus · Angela Zhou -
2020 Poster: Doubly Robust Off-Policy Value and Gradient Estimation for Deterministic Policies »
Nathan Kallus · Masatoshi Uehara -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 : Opening Remarks »
Thorsten Joachims · Nathan Kallus · Michele Santacatterina · Adith Swaminathan · David Sontag · Angela Zhou -
2019 Workshop: “Do the right thing”: machine learning and causal inference for improved decision making »
Michele Santacatterina · Thorsten Joachims · Nathan Kallus · Adith Swaminathan · David Sontag · Angela Zhou -
2019 : Nathan Kallus: Efficiently Breaking the Curse of Horizon with Double Reinforcement Learning »
Nathan Kallus -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the XAUC Metric »
Nathan Kallus · Angela Zhou -
2019 Poster: Assessing Disparate Impact of Personalized Interventions: Identifiability and Bounds »
Nathan Kallus · Angela Zhou -
2019 Poster: Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning »
Nathan Kallus · Masatoshi Uehara -
2019 Poster: Policy Evaluation with Latent Confounders via Optimal Balance »
Andrew Bennett · Nathan Kallus -
2018 Workshop: Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy »
Manuela Veloso · Nathan Kallus · Sameena Shah · Senthil Kumar · Isabelle Moulinier · Jiahao Chen · John Paisley -
2018 Poster: Causal Inference with Noisy and Missing Covariates via Matrix Factorization »
Nathan Kallus · Xiaojie Mao · Madeleine Udell -
2018 Poster: Removing Hidden Confounding by Experimental Grounding »
Nathan Kallus · Aahlad Puli · Uri Shalit -
2018 Spotlight: Removing Hidden Confounding by Experimental Grounding »
Nathan Kallus · Aahlad Puli · Uri Shalit -
2018 Poster: Confounding-Robust Policy Improvement »
Nathan Kallus · Angela Zhou -
2018 Poster: Balanced Policy Evaluation and Learning »
Nathan Kallus -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan