Timezone: »
Poster
Semi-Parametric Dynamic Contextual Pricing
Virag Shah · Ramesh Johari · Jose Blanchet
Tue Dec 10 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #27
Motivated by the application of real-time pricing in e-commerce platforms, we consider the problem of revenue-maximization in a setting where the seller can leverage contextual information describing the customer's history and the product's type to predict her valuation of the product. However, her true valuation is unobservable to the seller, only binary outcome in the form of success-failure of a transaction is observed. Unlike in usual contextual bandit settings, the optimal price/arm given a covariate in our setting is sensitive to the detailed characteristics of the residual uncertainty distribution. We develop a semi-parametric model in which the residual distribution is non-parametric and provide the first algorithm which learns both regression parameters and residual distribution with $\tilde O(\sqrt{n})$ regret. We empirically test a scalable implementation of our algorithm and observe good performance.
Author Information
Virag Shah (Stanford University)
Ramesh Johari (Stanford University)
Jose Blanchet (Stanford University)
More from the Same Authors
-
2022 : Minimax Optimal Kernel Operator Learning via Multilevel Training »
Jikai Jin · Yiping Lu · Jose Blanchet · Lexing Ying -
2022 : Synthetic Principle Component Design: Fast Covariate Balancing with Synthetic Controls »
Yiping Lu · Jiajin Li · Lexing Ying · Jose Blanchet -
2023 Poster: Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage »
Jose Blanchet · Miao Lu · Tong Zhang · Han Zhong -
2023 Poster: When can Regression-Adjusted Control Variate Help? Rare Events, Sobolev Embedding and Minimax Optimality »
Jose Blanchet · Haoxuan Chen · Yiping Lu · Lexing Ying -
2023 Poster: Payoff-based Learning with Matrix Multiplicative Weights in Quantum Games »
Kyriakos Lotidis · Panayotis Mertikopoulos · Nicholas Bambos · Jose Blanchet -
2023 Poster: Doubly Smoothed GDA for Constrained Nonconvex-Nonconcave Minimax Optimization »
Taoli Zheng · Linglingzhi Zhu · Anthony Man-Cho So · Jose Blanchet · Jiajin Li -
2022 Poster: Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent »
Yiping Lu · Jose Blanchet · Lexing Ying -
2022 Poster: Tikhonov Regularization is Optimal Transport Robust under Martingale Constraints »
Jiajin Li · Sirui Lin · Jose Blanchet · Viet Anh Nguyen -
2021 : Statistical Numerical PDE : Fast Rate, Neural Scaling Law and When it’s Optimal »
Yiping Lu · Haoxuan Chen · Jianfeng Lu · Lexing Ying · Jose Blanchet -
2021 Poster: Adversarial Regression with Doubly Non-negative Weighting Matrices »
Tam Le · Truyen Nguyen · Makoto Yamada · Jose Blanchet · Viet Anh Nguyen -
2021 Poster: Modified Frank Wolfe in Probability Space »
Carson Kent · Jiajin Li · Jose Blanchet · Peter W Glynn -
2020 Poster: Distributionally Robust Parametric Maximum Likelihood Estimation »
Viet Anh Nguyen · Xuhui Zhang · Jose Blanchet · Angelos Georghiou -
2020 Poster: Adaptive Experimental Design with Temporal Interference: A Maximum Likelihood Approach »
Peter W Glynn · Ramesh Johari · Mohammad Rasouli -
2020 Poster: Unreasonable Effectiveness of Greedy Algorithms in Multi-Armed Bandit with Many Arms »
Mohsen Bayati · Nima Hamidi · Ramesh Johari · Khashayar Khosravi -
2020 Spotlight: Unreasonable Effectiveness of Greedy Algorithms in Multi-Armed Bandit with Many Arms »
Mohsen Bayati · Nima Hamidi · Ramesh Johari · Khashayar Khosravi -
2020 Poster: Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality »
Nian Si · Jose Blanchet · Soumyadip Ghosh · Mark Squillante -
2020 Spotlight: Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality »
Nian Si · Jose Blanchet · Soumyadip Ghosh · Mark Squillante -
2020 Poster: Distributionally Robust Local Non-parametric Conditional Estimation »
Viet Anh Nguyen · Fan Zhang · Jose Blanchet · Erick Delage · Yinyu Ye -
2019 Poster: Learning in Generalized Linear Contextual Bandits with Stochastic Delays »
Zhengyuan Zhou · Renyuan Xu · Jose Blanchet -
2019 Spotlight: Learning in Generalized Linear Contextual Bandits with Stochastic Delays »
Zhengyuan Zhou · Renyuan Xu · Jose Blanchet -
2019 Poster: Online EXP3 Learning in Adversarial Bandits with Delayed Feedback »
Ilai Bistritz · Zhengyuan Zhou · Xi Chen · Nicholas Bambos · Jose Blanchet -
2019 Poster: Multivariate Distributionally Robust Convex Regression under Absolute Error Loss »
Jose Blanchet · Peter W Glynn · Jun Yan · Zhengqing Zhou -
2018 Poster: Bandit Learning with Positive Externalities »
Virag Shah · Jose Blanchet · Ramesh Johari