`

Timezone: »

 
Poster
Importance Resampling for Off-policy Prediction
Matthew Schlegel · Wesley Chung · Daniel Graves · Jian Qian · Martha White

Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #206

Importance sampling (IS) is a common reweighting strategy for off-policy prediction in reinforcement learning. While it is consistent and unbiased, it can result in high variance updates to the weights for the value function. In this work, we explore a resampling strategy as an alternative to reweighting. We propose Importance Resampling (IR) for off-policy prediction, which resamples experience from a replay buffer and applies standard on-policy updates. The approach avoids using importance sampling ratios in the update, instead correcting the distribution before the update. We characterize the bias and consistency of IR, particularly compared to Weighted IS (WIS). We demonstrate in several microworlds that IR has improved sample efficiency and lower variance updates, as compared to IS and several variance-reduced IS strategies, including variants of WIS and V-trace which clips IS ratios. We also provide a demonstration showing IR improves over IS for learning a value function from images in a racing car simulator.

Author Information

Matthew Schlegel (University of Alberta)

An AI and coffee enthusiast with research experience in RL and ML. Currently pursuing a PhD at the University of Alberta! Excited about off-policy policy evaluation, general value functions, understanding the behavior of artificial neural networks, and cognitive science (specifically cognitive neuroscience).

Wesley Chung (McGill University)
Daniel Graves (Huawei Technologies Canada)
Jian Qian (University of Alberta)
Martha White (University of Alberta)

More from the Same Authors

  • 2020 : Paper 49: ULTRA: A reinforcement learning generalization benchmark for autonomous driving »
    · Daniel Graves
  • 2021 Workshop: Deep Reinforcement Learning »
    Pieter Abbeel · Chelsea Finn · David Silver · Matthew Taylor · Martha White · Srijita Das · Yuqing Du · Andrew Patterson · Manan Tomar · Olivia Watkins
  • 2021 Poster: Continual Auxiliary Task Learning »
    Matthew McLeod · Chunlok Lo · Matthew Schlegel · Andrew Jacobsen · Raksha Kumaraswamy · Martha White · Adam White
  • 2021 Poster: Structural Credit Assignment in Neural Networks using Reinforcement Learning »
    Dhawal Gupta · Gabor Mihucz · Matthew Schlegel · James Kostas · Philip Thomas · Martha White
  • 2020 Poster: An implicit function learning approach for parametric modal regression »
    Yangchen Pan · Ehsan Imani · Amir-massoud Farahmand · Martha White
  • 2020 Poster: Towards Safe Policy Improvement for Non-Stationary MDPs »
    Yash Chandak · Scott Jordan · Georgios Theocharous · Martha White · Philip Thomas
  • 2020 Spotlight: Towards Safe Policy Improvement for Non-Stationary MDPs »
    Yash Chandak · Scott Jordan · Georgios Theocharous · Martha White · Philip Thomas
  • 2020 Session: Orals & Spotlights Track 14: Reinforcement Learning »
    Deepak Pathak · Martha White
  • 2019 : Closing Remarks »
    Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White
  • 2019 : Poster and Coffee Break 2 »
    Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
  • 2019 : Poster Session »
    Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn
  • 2019 Workshop: The Optimization Foundations of Reinforcement Learning »
    Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White
  • 2019 : Opening Remarks »
    Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White
  • 2019 Poster: Learning Macroscopic Brain Connectomes via Group-Sparse Factorization »
    Farzane Aminmansour · Andrew Patterson · Lei Le · Yisu Peng · Daniel Mitchell · Franco Pestilli · Cesar F Caiafa · Russell Greiner · Martha White
  • 2019 Poster: Meta-Learning Representations for Continual Learning »
    Khurram Javed · Martha White
  • 2018 : Invited Speaker #6 Martha White »
    Martha White
  • 2018 : Lunch & Posters »
    Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang
  • 2018 Poster: Supervised autoencoders: Improving generalization performance with unsupervised regularizers »
    Lei Le · Andrew Patterson · Martha White
  • 2018 Poster: Context-dependent upper-confidence bounds for directed exploration »
    Raksha Kumaraswamy · Matthew Schlegel · Adam White · Martha White
  • 2018 Poster: An Off-policy Policy Gradient Theorem Using Emphatic Weightings »
    Ehsan Imani · Eric Graves · Martha White
  • 2016 Poster: Estimating the class prior and posterior from noisy positives and unlabeled data »
    Shantanu Jain · Martha White · Predrag Radivojac
  • 2012 Poster: Convex Multi-view Subspace Learning »
    Martha White · Yao-Liang Yu · Xinhua Zhang · Dale Schuurmans
  • 2010 Poster: Relaxed Clipping: A Global Training Method for Robust Regression and Classification »
    Yao-Liang Yu · Min Yang · Linli Xu · Martha White · Dale Schuurmans
  • 2010 Poster: Interval Estimation for Reinforcement-Learning Algorithms in Continuous-State Domains »
    Martha White · Adam M White