Timezone: »
We might hope that when faced with unexpected inputs, well-designed software systems would fire off warnings. Machine learning (ML) systems, however, which depend strongly on properties of their inputs (e.g. the i.i.d. assumption), tend to fail silently. This paper explores the problem of building ML systems that fail loudly, investigating methods for detecting dataset shift, identifying exemplars that most typify the shift, and quantifying shift malignancy. We focus on several datasets and various perturbations to both covariates and label distributions with varying magnitudes and fractions of data affected. Interestingly, we show that across the dataset shifts that we explore, a two-sample-testing-based approach, using pre-trained classifiers for dimensionality reduction, performs best. Moreover, we demonstrate that domain-discriminating approaches tend to be helpful for characterizing shifts qualitatively and determining if they are harmful.
Author Information
Stephan Rabanser (Amazon AWS AI Labs)
Stephan Günnemann (Technical University of Munich)
Zachary Lipton (Carnegie Mellon University)
More from the Same Authors
-
2021 : Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience »
Johannes C. Paetzold · Julian McGinnis · Suprosanna Shit · Ivan Ezhov · Paul Büschl · Chinmay Prabhakar · Anjany Sekuboyina · Mihail Todorov · Georgios Kaissis · Ali Ertürk · Stephan Günnemann · Bjoern Menze -
2021 : Model-Free Learning for Continuous Timing as an Action »
Helen Zhou · David Childers · Zachary Lipton -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 : Downstream Datasets Make Surprisingly Good Pretraining Corpora »
Kundan Krishna · Saurabh Garg · Jeffrey Bigham · Zachary Lipton -
2022 : Disentangling the Mechanisms Behind Implicit Regularization in SGD »
Zachary Novack · Simran Kaur · Tanya Marwah · Saurabh Garg · Zachary Lipton -
2022 : torchode: A Parallel ODE Solver for PyTorch »
Marten Lienen · Stephan Günnemann -
2022 : RLSBench: A Large-Scale Empirical Study of Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · James Sharpnack · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : Modeling Temporal Data as Continuous Functions with Process Diffusion »
Marin Biloš · Kashif Rasul · Anderson Schneider · Yuriy Nevmyvaka · Stephan Günnemann -
2022 : Training Differentially Private Graph Neural Networks with Random Walk Sampling »
Morgane Ayle · Jan Schuchardt · Lukas Gosch · Daniel Zügner · Stephan Günnemann -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 : Local Causal Discovery for Estimating Causal Effects »
Shantanu Gupta · David Childers · Zachary Lipton -
2022 : On the Maximum Hessian Eigenvalue and Generalization »
Simran Kaur · Jeremy M Cohen · Zachary Lipton -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Latent Space Simulator for Unveiling Molecular Free Energy Landscapes and Predicting Transition Dynamics »
Simon Dobers · Simon Dobers · Hannes Stärk · Xiang Fu · Dominique Beaini · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : Transition Path Sampling with Boltzmann Generator-based MCMC Moves »
Michael Plainer · Hannes Stärk · Charlotte Bunne · Stephan Günnemann -
2023 : For Distillation, Tokens Are Not All You Need »
Mrigank Raman · Pranav Mani · Davis Liang · Zachary Lipton -
2023 : On the Adversarial Robustness of Graph Contrastive Learning Methods »
Filippo Guerranti · Zinuo Yi · Anna Starovoit · Rafiq Kamel · Simon Geisler · Stephan Günnemann -
2023 : Poisoning $\times$ Evasion: Symbiotic Adversarial Robustness for Graph Neural Networks »
Ege Erdogan · Simon Geisler · Stephan Günnemann -
2023 : MoCo-Transfer: Investigating out-of-distribution contrastive learning for limited-data domains »
Yuwen Chen · Helen Zhou · Zachary Lipton -
2023 : Adversarial Attacks and Defenses in Large Language Models: Old and New Threats »
Leo Schwinn · David Dobre · Stephan Günnemann · Gauthier Gidel -
2023 Poster: Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · J. Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift »
Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan -
2023 Poster: (Provable) Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More »
Jan Schuchardt · Yan Scholten · Stephan Günnemann -
2023 Poster: Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms »
Dheeraj Baby · Saurabh Garg · Tzu-Ching Yen · Sivaraman Balakrishnan · Zachary Lipton · Yu-Xiang Wang -
2023 Poster: Hierarchical Randomized Smoothing »
Yan Scholten · Jan Schuchardt · Aleksandar Bojchevski · Stephan Günnemann -
2023 Poster: Add and Thin: Diffusion for Temporal Point Processes »
David Lüdke · Marin Biloš · Oleksandr Shchur · Marten Lienen · Stephan Günnemann -
2023 Poster: Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions »
Lukas Gosch · Simon Geisler · Daniel Sturm · Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2022 : Contributed Talk: Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 : Panel on Technical Challenges Associated with Reliable Human Evaluations of Generative Models »
Long Ouyang · Tongshuang Wu · Zachary Lipton -
2022 Workshop: Human Evaluation of Generative Models »
Divyansh Kaushik · Jennifer Hsia · Jessica Huynh · Yonadav Shavit · Samuel Bowman · Ting-Hao Huang · Douwe Kiela · Zachary Lipton · Eric Michael Smith -
2022 Poster: Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · J. Zico Kolter -
2022 Poster: Are Defenses for Graph Neural Networks Robust? »
Felix Mujkanovic · Simon Geisler · Stephan Günnemann · Aleksandar Bojchevski -
2022 Poster: Unsupervised Learning under Latent Label Shift »
Manley Roberts · Pranav Mani · Saurabh Garg · Zachary Lipton -
2022 Poster: Domain Adaptation under Open Set Label Shift »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton -
2022 Poster: Invariance-Aware Randomized Smoothing Certificates »
Jan Schuchardt · Stephan Günnemann -
2022 Poster: Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution »
Leon Hetzel · Simon Boehm · Niki Kilbertus · Stephan Günnemann · mohammad lotfollahi · Fabian Theis -
2022 Poster: Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks »
Yan Scholten · Jan Schuchardt · Simon Geisler · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Robustness of Graph Neural Networks at Scale »
Simon Geisler · Tobias Schmidt · Hakan Şirin · Daniel Zügner · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Directional Message Passing on Molecular Graphs via Synthetic Coordinates »
Johannes Gasteiger · Chandan Yeshwanth · Stephan Günnemann -
2021 Poster: Neural Flows: Efficient Alternative to Neural ODEs »
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann -
2021 Poster: Detecting Anomalous Event Sequences with Temporal Point Processes »
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann -
2021 Poster: GemNet: Universal Directional Graph Neural Networks for Molecules »
Johannes Gasteiger · Florian Becker · Stephan Günnemann -
2021 Poster: Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification »
Maximilian Stadler · Bertrand Charpentier · Simon Geisler · Daniel Zügner · Stephan Günnemann -
2020 : Contributed Talk 1: Fairness Under Partial Compliance »
Jessica Dai · Zachary Lipton -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Workshop: HAMLETS: Human And Model in the Loop Evaluation and Training Strategies »
Divyansh Kaushik · Bhargavi Paranjape · Forough Arabshahi · Yanai Elazar · Yixin Nie · Max Bartolo · Polina Kirichenko · Pontus Lars Erik Saito Stenetorp · Mohit Bansal · Zachary Lipton · Douwe Kiela -
2020 Poster: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: A Unified View of Label Shift Estimation »
Saurabh Garg · Yifan Wu · Sivaraman Balakrishnan · Zachary Lipton -
2020 Poster: Deep Rao-Blackwellised Particle Filters for Time Series Forecasting »
Richard Kurle · Syama Sundar Rangapuram · Emmanuel de Bézenac · Stephan Günnemann · Jan Gasthaus -
2020 Poster: Reliable Graph Neural Networks via Robust Aggregation »
Simon Geisler · Daniel Zügner · Stephan Günnemann -
2020 Oral: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts »
Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2019 Poster: Learning Robust Global Representations by Penalizing Local Predictive Power »
Haohan Wang · Songwei Ge · Zachary Lipton · Eric Xing -
2019 Poster: Diffusion Improves Graph Learning »
Johannes Gasteiger · Stefan Weißenberger · Stephan Günnemann -
2019 Poster: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Spotlight: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2019 Poster: Certifiable Robustness to Graph Perturbations »
Aleksandar Bojchevski · Stephan Günnemann -
2018 : Invited Talk 1 »
Zachary Lipton -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Zachary Lipton »
Zachary Lipton -
2018 Poster: Does mitigating ML's impact disparity require treatment disparity? »
Zachary Lipton · Julian McAuley · Alexandra Chouldechova