Timezone: »
Deep model compression has been extensively studied, and state-of-the-art methods can now achieve high compression ratios with minimal accuracy loss. This paper studies model compression through a different lens: could we compress models without hurting their robustness to adversarial attacks, in addition to maintaining accuracy? Previous literature suggested that the goals of robustness and compactness might sometimes contradict. We propose a novel Adversarially Trained Model Compression (ATMC) framework. ATMC constructs a unified constrained optimization formulation, where existing compression means (pruning, factorization, quantization) are all integrated into the constraints. An efficient algorithm is then developed. An extensive group of experiments are presented, demonstrating that ATMC obtains remarkably more favorable trade-off among model size, accuracy and robustness, over currently available alternatives in various settings. The codes are publicly available at: https://github.com/shupenggui/ATMC.
Author Information
Shupeng Gui (University of Rochester)
Haotao Wang (Texas A&M University)
Haichuan Yang (University of Rochester)
Chen Yu (University of Rochester)
Zhangyang Wang (TAMU)
Ji Liu (Kwai Inc.)
More from the Same Authors
-
2022 Poster: Improving Certified Robustness via Statistical Learning with Logical Reasoning »
Zhuolin Yang · Zhikuan Zhao · Boxin Wang · Jiawei Zhang · Linyi Li · Hengzhi Pei · Bojan Karlaš · Ji Liu · Heng Guo · Ce Zhang · Bo Li -
2021 Poster: ErrorCompensatedX: error compensation for variance reduced algorithms »
Hanlin Tang · Yao Li · Ji Liu · Ming Yan -
2021 Poster: Improving Contrastive Learning on Imbalanced Data via Open-World Sampling »
Ziyu Jiang · Tianlong Chen · Ting Chen · Zhangyang Wang -
2021 Poster: Sparse Training via Boosting Pruning Plasticity with Neuroregeneration »
Shiwei Liu · Tianlong Chen · Xiaohan Chen · Zahra Atashgahi · Lu Yin · Huanyu Kou · Li Shen · Mykola Pechenizkiy · Zhangyang Wang · Decebal Constantin Mocanu -
2021 Poster: Stronger NAS with Weaker Predictors »
Junru Wu · Xiyang Dai · Dongdong Chen · Yinpeng Chen · Mengchen Liu · Ye Yu · Zhangyang Wang · Zicheng Liu · Mei Chen · Lu Yuan -
2021 Poster: IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers »
Bowen Pan · Rameswar Panda · Yifan Jiang · Zhangyang Wang · Rogerio Feris · Aude Oliva -
2021 Poster: TNASP: A Transformer-based NAS Predictor with a Self-evolution Framework »
Shun Lu · Jixiang Li · Jianchao Tan · Sen Yang · Ji Liu -
2021 Poster: Hyperparameter Tuning is All You Need for LISTA »
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin -
2021 Poster: Chasing Sparsity in Vision Transformers: An End-to-End Exploration »
Tianlong Chen · Yu Cheng · Zhe Gan · Lu Yuan · Lei Zhang · Zhangyang Wang -
2021 Poster: Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective »
Tianlong Chen · Yu Cheng · Zhe Gan · Jingjing Liu · Zhangyang Wang -
2021 Poster: Shifted Chunk Transformer for Spatio-Temporal Representational Learning »
Xuefan Zha · Wentao Zhu · Lv Xun · Sen Yang · Ji Liu -
2021 Poster: TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up »
Yifan Jiang · Shiyu Chang · Zhangyang Wang -
2021 Poster: AugMax: Adversarial Composition of Random Augmentations for Robust Training »
Haotao Wang · Chaowei Xiao · Jean Kossaifi · Zhiding Yu · Anima Anandkumar · Zhangyang Wang -
2021 Poster: Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems »
Wenqing Zheng · Qiangqiang Guo · Hao Yang · Peihao Wang · Zhangyang Wang -
2021 Poster: The Elastic Lottery Ticket Hypothesis »
Xiaohan Chen · Yu Cheng · Shuohang Wang · Zhe Gan · Jingjing Liu · Zhangyang Wang -
2021 Poster: Sanity Checks for Lottery Tickets: Does Your Winning Ticket Really Win the Jackpot? »
Xiaolong Ma · Geng Yuan · Xuan Shen · Tianlong Chen · Xuxi Chen · Xiaohan Chen · Ning Liu · Minghai Qin · Sijia Liu · Zhangyang Wang · Yanzhi Wang -
2021 Poster: You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership »
Xuxi Chen · Tianlong Chen · Zhenyu Zhang · Zhangyang Wang -
2020 Poster: Once-for-All Adversarial Training: In-Situ Tradeoff between Robustness and Accuracy for Free »
Haotao Wang · Tianlong Chen · Shupeng Gui · TingKuei Hu · Ji Liu · Zhangyang Wang -
2019 Workshop: AI for Humanitarian Assistance and Disaster Response »
Ritwik Gupta · Robin Murphy · Trevor Darrell · Eric Heim · Zhangyang Wang · Bryce Goodman · Piotr Biliński -
2019 Poster: E2-Train: Training State-of-the-art CNNs with Over 80% Less Energy »
Ziyu Jiang · Yue Wang · Xiaohan Chen · Pengfei Xu · Yang Zhao · Yingyan Lin · Zhangyang Wang -
2019 Poster: Efficient Smooth Non-Convex Stochastic Compositional Optimization via Stochastic Recursive Gradient Descent »
Wenqing Hu · Chris Junchi Li · Xiangru Lian · Ji Liu · Angela Yuan -
2019 Poster: Learning to Optimize in Swarms »
Yue Cao · Tianlong Chen · Zhangyang Wang · Yang Shen -
2019 Poster: Global Sparse Momentum SGD for Pruning Very Deep Neural Networks »
Xiaohan Ding · guiguang ding · Xiangxin Zhou · Yuchen Guo · Jungong Han · Ji Liu -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2018 Poster: Can We Gain More from Orthogonality Regularizations in Training Deep Networks? »
Nitin Bansal · Xiaohan Chen · Zhangyang Wang -
2018 Poster: Communication Compression for Decentralized Training »
Hanlin Tang · Shaoduo Gan · Ce Zhang · Tong Zhang · Ji Liu -
2018 Poster: Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity »
Conghui Tan · Tong Zhang · Shiqian Ma · Ji Liu -
2018 Poster: Gradient Sparsification for Communication-Efficient Distributed Optimization »
Jianqiao Wangni · Jialei Wang · Ji Liu · Tong Zhang -
2018 Poster: Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds »
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin -
2018 Spotlight: Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds »
Xiaohan Chen · Jialin Liu · Zhangyang Wang · Wotao Yin -
2017 Poster: Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent »
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu -
2017 Oral: Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent »
Xiangru Lian · Ce Zhang · Huan Zhang · Cho-Jui Hsieh · Wei Zhang · Ji Liu -
2016 Poster: Asynchronous Parallel Greedy Coordinate Descent »
Yang You · Xiangru Lian · Ji Liu · Hsiang-Fu Yu · Inderjit Dhillon · James Demmel · Cho-Jui Hsieh -
2016 Poster: Accelerating Stochastic Composition Optimization »
Mengdi Wang · Ji Liu · Ethan Fang -
2016 Poster: A Comprehensive Linear Speedup Analysis for Asynchronous Stochastic Parallel Optimization from Zeroth-Order to First-Order »
Xiangru Lian · Huan Zhang · Cho-Jui Hsieh · Yijun Huang · Ji Liu -
2015 Poster: Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization »
Xiangru Lian · Yijun Huang · Yuncheng Li · Ji Liu -
2015 Spotlight: Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization »
Xiangru Lian · Yijun Huang · Yuncheng Li · Ji Liu -
2014 Poster: Exclusive Feature Learning on Arbitrary Structures via $\ell_{1,2}$-norm »
Deguang Kong · Ryohei Fujimaki · Ji Liu · Feiping Nie · Chris Ding -
2013 Poster: An Approximate, Efficient LP Solver for LP Rounding »
Srikrishna Sridhar · Stephen Wright · Christopher Re · Ji Liu · Victor Bittorf · Ce Zhang -
2012 Poster: Regularized Off-Policy TD-Learning »
Bo Liu · Sridhar Mahadevan · Ji Liu -
2012 Spotlight: Regularized Off-Policy TD-Learning »
Bo Liu · Sridhar Mahadevan · Ji Liu -
2010 Poster: Multi-Stage Dantzig Selector »
Ji Liu · Peter Wonka · Jieping Ye