Timezone: »
Text-to-image generation, i.e. generating an image given a text description, is a very challenging task due to the significant semantic gap between the two domains. Humans, however, tackle this problem intelligently. We learn from diverse objects to form a solid prior about semantics, textures, colors, shapes, and layouts. Given a text description, we immediately imagine an overall visual impression using this prior and, based on this, we draw a picture by progressively adding more and more details. In this paper, and inspired by this process, we propose a novel text-to-image method called LeicaGAN to combine the above three phases in a unified framework. First, we formulate the multiple priors learning phase as a textual-visual co-embedding (TVE) comprising a text-image encoder for learning semantic, texture, and color priors and a text-mask encoder for learning shape and layout priors. Then, we formulate the imagination phase as multiple priors aggregation (MPA) by combining these complementary priors and adding noise for diversity. Lastly, we formulate the creation phase by using a cascaded attentive generator (CAG) to progressively draw a picture from coarse to fine. We leverage adversarial learning for LeicaGAN to enforce semantic consistency and visual realism. Thorough experiments on two public benchmark datasets demonstrate LeicaGAN's superiority over the baseline method. Code has been made available at https://github.com/qiaott/LeicaGAN.
Author Information
Tingting Qiao (Zhejiang University)
Jing Zhang (The University of Sydney)
Duanqing Xu (Zhejiang University)
Dacheng Tao (University of Sydney)
More from the Same Authors
-
2021 : AP-10K: A Benchmark for Animal Pose Estimation in the Wild »
Hang Yu · Yufei Xu · Jing Zhang · Wei Zhao · Ziyu Guan · Dacheng Tao -
2021 Poster: ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias »
Yufei Xu · Qiming ZHANG · Jing Zhang · Dacheng Tao -
2020 Poster: SCOP: Scientific Control for Reliable Neural Network Pruning »
Yehui Tang · Yunhe Wang · Yixing Xu · Dacheng Tao · Chunjing XU · Chao Xu · Chang Xu -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Auto Learning Attention »
Benteng Ma · Jing Zhang · Yong Xia · Dacheng Tao -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Searching for Low-Bit Weights in Quantized Neural Networks »
Zhaohui Yang · Yunhe Wang · Kai Han · Chunjing XU · Chao Xu · Dacheng Tao · Chang Xu -
2020 Poster: Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning »
Huan Fu · Shunming Li · Rongfei Jia · Mingming Gong · Binqiang Zhao · Dacheng Tao -
2020 Poster: Video Frame Interpolation without Temporal Priors »
Youjian Zhang · Chaoyue Wang · Dacheng Tao -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2019 Poster: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Zhuozhuo Tu · Jingwei Zhang · Dacheng Tao -
2019 Spotlight: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Zhuozhuo Tu · Jingwei Zhang · Dacheng Tao -
2019 Poster: Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation »
Qiming ZHANG · Jing Zhang · Wei Liu · Dacheng Tao -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao -
2019 Poster: Positive-Unlabeled Compression on the Cloud »
Yixing Xu · Yunhe Wang · Hanting Chen · Kai Han · Chunjing XU · Dacheng Tao · Chang Xu -
2019 Poster: Learning from Bad Data via Generation »
Tianyu Guo · Chang Xu · Boxin Shi · Chao Xu · Dacheng Tao -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Dual Swap Disentangling »
Zunlei Feng · Xinchao Wang · Chenglong Ke · An-Xiang Zeng · Dacheng Tao · Mingli Song