Timezone: »
Poster
Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation
Qiming ZHANG · Jing Zhang · Wei Liu · Dacheng Tao
Wed Dec 11 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #76
Unsupervised domain adaptation (UDA) aims to enhance the generalization capability of a certain model from a source domain to a target domain. UDA is of particular significance since no extra effort is devoted to annotating target domain samples. However, the different data distributions in the two domains, or \emph{domain shift/discrepancy}, inevitably compromise the UDA performance. Although there has been a progress in matching the marginal distributions between two domains, the classifier favors the source domain features and makes incorrect predictions on the target domain due to category-agnostic feature alignment. In this paper, we propose a novel category anchor-guided (CAG) UDA model for semantic segmentation, which explicitly enforces category-aware feature alignment to learn shared discriminative features and classifiers simultaneously. First, the category-wise centroids of the source domain features are used as guided anchors to identify the active features in the target domain and also assign them pseudo-labels. Then, we leverage an anchor-based pixel-level distance loss and a discriminative loss to drive the intra-category features closer and the inter-category features further apart, respectively. Finally, we devise a stagewise training mechanism to reduce the error accumulation and adapt the proposed model progressively. Experiments on both the GTA5$\rightarrow $Cityscapes and SYNTHIA$\rightarrow $Cityscapes scenarios demonstrate the superiority of our CAG-UDA model over the state-of-the-art methods. The code is available at \url{https://github.com/RogerZhangzz/CAG\_UDA}.
Author Information
Qiming ZHANG (University of Sydney)
Jing Zhang (The University of Sydney)
Wei Liu (Tencent AI Lab)
Dacheng Tao (University of Sydney)
More from the Same Authors
-
2021 : AP-10K: A Benchmark for Animal Pose Estimation in the Wild »
Hang Yu · Yufei Xu · Jing Zhang · Wei Zhao · Ziyu Guan · Dacheng Tao -
2022 Poster: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation »
Yufei Xu · Jing Zhang · Qiming ZHANG · Dacheng Tao -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Egocentric Video-Language Pretraining »
Kevin Qinghong Lin · Jinpeng Wang · Mattia Soldan · Michael Wray · Rui Yan · Eric Z. XU · Difei Gao · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Poster: Egocentric Video-Language Pretraining »
Kevin Qinghong Lin · Jinpeng Wang · Mattia Soldan · Michael Wray · Rui Yan · Eric Z. XU · Difei Gao · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2021 Poster: ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias »
Yufei Xu · Qiming ZHANG · Jing Zhang · Dacheng Tao -
2021 Poster: Neural Routing by Memory »
Kaipeng Zhang · Zhenqiang Li · Zhifeng Li · Wei Liu · Yoichi Sato -
2021 Poster: Generalized and Discriminative Few-Shot Object Detection via SVD-Dictionary Enhancement »
Aming WU · Suqi Zhao · Cheng Deng · Wei Liu -
2020 Poster: SCOP: Scientific Control for Reliable Neural Network Pruning »
Yehui Tang · Yunhe Wang · Yixing Xu · Dacheng Tao · Chunjing XU · Chao Xu · Chang Xu -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Auto Learning Attention »
Benteng Ma · Jing Zhang · Yong Xia · Dacheng Tao -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Searching for Low-Bit Weights in Quantized Neural Networks »
Zhaohui Yang · Yunhe Wang · Kai Han · Chunjing XU · Chao Xu · Dacheng Tao · Chang Xu -
2020 Poster: Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning »
Huan Fu · Shunming Li · Rongfei Jia · Mingming Gong · Binqiang Zhao · Dacheng Tao -
2020 Poster: Towards Playing Full MOBA Games with Deep Reinforcement Learning »
Deheng Ye · Guibin Chen · Wen Zhang · Sheng Chen · Bo Yuan · Bo Liu · Jia Chen · Zhao Liu · Fuhao Qiu · Hongsheng Yu · Yinyuting Yin · Bei Shi · Liang Wang · Tengfei Shi · Qiang Fu · Wei Yang · Lanxiao Huang · Wei Liu -
2020 Poster: Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies »
Yuehua Zhu · Muli Yang · Cheng Deng · Wei Liu -
2020 Poster: Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization »
Yan Yan · Yi Xu · Qihang Lin · Wei Liu · Tianbao Yang -
2020 Spotlight: Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies »
Yuehua Zhu · Muli Yang · Cheng Deng · Wei Liu -
2020 Poster: Video Frame Interpolation without Temporal Priors »
Youjian Zhang · Chaoyue Wang · Dacheng Tao -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2020 Poster: Adversarial Learning for Robust Deep Clustering »
Xu Yang · Cheng Deng · Kun Wei · Junchi Yan · Wei Liu -
2019 Poster: Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos »
Yitian Yuan · Lin Ma · Jingwen Wang · Wei Liu · Wenwu Zhu -
2019 Poster: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Zhuozhuo Tu · Jingwei Zhang · Dacheng Tao -
2019 Spotlight: Theoretical Analysis of Adversarial Learning: A Minimax Approach »
Zhuozhuo Tu · Jingwei Zhang · Dacheng Tao -
2019 Poster: Cross-Modal Learning with Adversarial Samples »
CHAO LI · Shangqian Gao · Cheng Deng · De Xie · Wei Liu -
2019 Poster: LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning »
Yali Du · Lei Han · Meng Fang · Ji Liu · Tianhong Dai · Dacheng Tao -
2019 Poster: Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge »
Tingting Qiao · Jing Zhang · Duanqing Xu · Dacheng Tao -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao -
2019 Poster: Positive-Unlabeled Compression on the Cloud »
Yixing Xu · Yunhe Wang · Hanting Chen · Kai Han · Chunjing XU · Dacheng Tao · Chang Xu -
2019 Poster: Learning from Bad Data via Generation »
Tianyu Guo · Chang Xu · Boxin Shi · Chao Xu · Dacheng Tao -
2019 Poster: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2019 Spotlight: Likelihood-Free Overcomplete ICA and Applications In Causal Discovery »
Chenwei DING · Mingming Gong · Kun Zhang · Dacheng Tao -
2018 Poster: Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling »
Yunzhe Tao · Qi Sun · Qiang Du · Wei Liu -
2018 Poster: Dual Swap Disentangling »
Zunlei Feng · Xinchao Wang · Chenglong Ke · An-Xiang Zeng · Dacheng Tao · Mingli Song -
2018 Poster: Generalizing Graph Matching beyond Quadratic Assignment Model »
Tianshu Yu · Junchi Yan · Yilin Wang · Wei Liu · baoxin Li -
2018 Poster: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation »
Wenqi Ren · Jiawei Zhang · Lin Ma · Jinshan Pan · Xiaochun Cao · Wangmeng Zuo · Wei Liu · Ming-Hsuan Yang -
2018 Poster: Distilled Wasserstein Learning for Word Embedding and Topic Modeling »
Hongteng Xu · Wenlin Wang · Wei Liu · Lawrence Carin -
2018 Poster: Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential Learning »
Xing Yan · Weizhong Zhang · Lin Ma · Wei Liu · Qi Wu -
2017 Poster: Geometric Descent Method for Convex Composite Minimization »
Shixiang Chen · Shiqian Ma · Wei Liu -
2017 Poster: Mixture-Rank Matrix Approximation for Collaborative Filtering »
Dongsheng Li · Chao Chen · Wei Liu · Tun Lu · Ning Gu · Stephen Chu -
2014 Poster: Discrete Graph Hashing »
Wei Liu · Cun Mu · Sanjiv Kumar · Shih-Fu Chang -
2014 Spotlight: Discrete Graph Hashing »
Wei Liu · Cun Mu · Sanjiv Kumar · Shih-Fu Chang -
2014 Poster: Zeta Hull Pursuits: Learning Nonconvex Data Hulls »
Yuanjun Xiong · Wei Liu · Deli Zhao · Xiaoou Tang