Timezone: »
Deep convolutional artificial neural networks (ANNs) are the leading class of candidate models of the mechanisms of visual processing in the primate ventral stream. While initially inspired by brain anatomy, over the past years, these ANNs have evolved from a simple eight-layer architecture in AlexNet to extremely deep and branching architectures, demonstrating increasingly better object categorization performance, yet bringing into question how brain-like they still are. In particular, typical deep models from the machine learning community are often hard to map onto the brain's anatomy due to their vast number of layers and missing biologically-important connections, such as recurrence. Here we demonstrate that better anatomical alignment to the brain and high performance on machine learning as well as neuroscience measures do not have to be in contradiction. We developed CORnet-S, a shallow ANN with four anatomically mapped areas and recurrent connectivity, guided by Brain-Score, a new large-scale composite of neural and behavioral benchmarks for quantifying the functional fidelity of models of the primate ventral visual stream. Despite being significantly shallower than most models, CORnet-S is the top model on Brain-Score and outperforms similarly compact models on ImageNet. Moreover, our extensive analyses of CORnet-S circuitry variants reveal that recurrence is the main predictive factor of both Brain-Score and ImageNet top-1 performance. Finally, we report that the temporal evolution of the CORnet-S "IT" neural population resembles the actual monkey IT population dynamics. Taken together, these results establish CORnet-S, a compact, recurrent ANN, as the current best model of the primate ventral visual stream.
Author Information
Jonas Kubilius (MIT, KU Leuven, Three Thirds)
Martin Schrimpf (MIT)
Kohitij Kar (MIT)
Rishi Rajalingham (MIT)
Ha Hong (Bay Labs Inc.)
Najib Majaj (NYU)
Elias Issa (Columbia University)
Pouya Bashivan (MIT)
Jonathan Prescott-Roy (MIT)
Kailyn Schmidt (MIT)
Aran Nayebi (Stanford University)
Daniel Bear (Stanford University)
Daniel Yamins (Stanford University)
James J DiCarlo (Massachusetts Institute of Technology)
Prof. DiCarlo received his Ph.D. in biomedical engineering and his M.D. from Johns Hopkins in 1998, and did his postdoctoral training in primate visual neurophysiology at Baylor College of Medicine. He joined the MIT faculty in 2002. He is a Sloan Fellow, a Pew Scholar, and a McKnight Scholar. His lab’s research goal is a computational understanding of the brain mechanisms that underlie object recognition. They use large-scale neurophysiology, brain imaging, optogenetic methods, and high-throughput computational simulations to understand how the primate ventral visual stream is able to untangle object identity from other latent image variables such as object position, scale, and pose. They have shown that populations of neurons at the highest cortical visual processing stage (IT) rapidly convey explicit representations of object identity, and that this ability is reshaped by natural visual experience. They have also shown how visual recognition tests can be used to discover new, high-performing bio-inspired algorithms. This understanding may inspire new machine vision systems, new neural prosthetics, and a foundation for understanding how high-level visual representation is altered in conditions such as agnosia, autism and dyslexia.
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs »
Thu. Dec 12th 06:05 -- 06:20 PM Room West Exhibition Hall C + B3
More from the Same Authors
-
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2021 : Physion: Evaluating Physical Prediction from Vision in Humans and Machines »
Daniel Bear · Elias Wang · Damian Mrowca · Felix Binder · Hsiao-Yu Tung · Pramod RT · Cameron Holdaway · Sirui Tao · Kevin Smith · Fan-Yun Sun · Fei-Fei Li · Nancy Kanwisher · Josh Tenenbaum · Dan Yamins · Judith Fan -
2021 Spotlight: Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks »
Aran Nayebi · Alexander Attinger · Malcolm Campbell · Kiah Hardcastle · Isabel Low · Caitlin S Mallory · Gabriel Mel · Ben Sorscher · Alex H Williams · Surya Ganguli · Lisa Giocomo · Dan Yamins -
2022 : Measuring the Alignment of ANNs and Primate V1 on Luminance and Contrast Response Characteristics »
Stephanie Olaiya · Tiago Marques · James J DiCarlo -
2022 : Implementing Divisive Normalization in CNNs Improves Robustness to Common Image Corruptions »
Andrew Cirincione · Reginald Verrier · Artiom Bic · Stephanie Olaiya · James J DiCarlo · Lawrence Udeigwe · Tiago Marques -
2022 : Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units »
Marliawaty I Gusti Bagus · Tiago Marques · Sachi Sanghavi · James J DiCarlo · Martin Schrimpf -
2023 Poster: Neural Foundations of Mental Simulation: Future Prediction of Latent Representations on Dynamic Scenes »
Aran Nayebi · Rishi Rajalingham · Mehrdad Jazayeri · Guangyu Robert Yang -
2023 Poster: Spatial-frequency channels, shape bias, and adversarial robustness »
Ajay Subramanian · Elena Sizikova · Najib Majaj · Denis Pelli -
2023 Poster: Brain-like Flexible Visual Inference by Harnessing Feedback Feedforward Alignment »
Tahereh Toosi · Elias Issa -
2023 Poster: Robustified ANNs Reveal Wormholes Between Human Category Percepts »
Guy Gaziv · Michael Lee · James J DiCarlo -
2023 Oral: Spatial-frequency channels, shape bias, and adversarial robustness »
Ajay Subramanian · Elena Sizikova · Najib Majaj · Denis Pelli -
2022 : A report on recent experimental tests of two predictions of contemporary computable models of the biological deep neural network underling primate visual intelligence »
James J DiCarlo -
2022 Poster: How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning? »
Chengxu Zhuang · Ziyu Xiang · Yoon Bai · Xiaoxuan Jia · Nicholas Turk-Browne · Kenneth Norman · James J DiCarlo · Dan Yamins -
2021 : Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs »
Avinash Baidya · Joel Dapello · James J DiCarlo · Tiago Marques -
2021 Poster: Adversarial Feature Desensitization »
Pouya Bashivan · Reza Bayat · Adam Ibrahim · Kartik Ahuja · Mojtaba Faramarzi · Touraj Laleh · Blake Richards · Irina Rish -
2021 Poster: Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks »
Aran Nayebi · Alexander Attinger · Malcolm Campbell · Kiah Hardcastle · Isabel Low · Caitlin S Mallory · Gabriel Mel · Ben Sorscher · Alex H Williams · Surya Ganguli · Lisa Giocomo · Dan Yamins -
2021 Poster: Neural Population Geometry Reveals the Role of Stochasticity in Robust Perception »
Joel Dapello · Jenelle Feather · Hang Le · Tiago Marques · David Cox · Josh McDermott · James J DiCarlo · Sueyeon Chung -
2021 : ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation »
Chuang Gan · Jeremy Schwartz · Seth Alter · Damian Mrowca · Martin Schrimpf · James Traer · Julian De Freitas · Jonas Kubilius · Abhishek Bhandwaldar · Nick Haber · Megumi Sano · Kuno Kim · Elias Wang · Michael Lingelbach · Aidan Curtis · Kevin Feigelis · Daniel Bear · Dan Gutfreund · David Cox · Antonio Torralba · James J DiCarlo · Josh Tenenbaum · Josh McDermott · Dan Yamins -
2020 Poster: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Poster: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2020 Poster: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2020 Poster: Pruning neural networks without any data by iteratively conserving synaptic flow »
Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli -
2020 Spotlight: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations »
Joel Dapello · Tiago Marques · Martin Schrimpf · Franziska Geiger · David Cox · James J DiCarlo -
2020 Oral: Learning Physical Graph Representations from Visual Scenes »
Daniel Bear · Chaofei Fan · Damian Mrowca · Yunzhu Li · Seth Alter · Aran Nayebi · Jeremy Schwartz · Li Fei-Fei · Jiajun Wu · Josh Tenenbaum · Daniel Yamins -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 Poster: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction »
Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli -
2018 : Talk 6: Dan Yamins - The Objects of Our Curiosity: Intrinsic Motivation, Intuitive Physics and Self-Supervised Learning »
Daniel Yamins -
2018 : Lunch & Posters »
Haytham Fayek · German Parisi · Brian Xu · Pramod Kaushik Mudrakarta · Sophie Cerf · Sarah Wassermann · Davit Soselia · Rahaf Aljundi · Mohamed Elhoseiny · Frantzeska Lavda · Kevin J Liang · Arslan Chaudhry · Sanmit Narvekar · Vincenzo Lomonaco · Wesley Chung · Michael Chang · Ying Zhao · Zsolt Kira · Pouya Bashivan · Banafsheh Rafiee · Oleksiy Ostapenko · Andrew Jones · Christos Kaplanis · Sinan Kalkan · Dan Teng · Xu He · Vincent Liu · Somjit Nath · Sungsoo Ahn · Ting Chen · Shenyang Huang · Yash Chandak · Nathan Sprague · Martin Schrimpf · Tony Kendall · Jonathan Richard Schwarz · Michael Li · Yunshu Du · Yen-Chang Hsu · Samira Abnar · Bo Wang -
2018 Poster: Learning to Play With Intrinsically-Motivated, Self-Aware Agents »
Nick Haber · Damian Mrowca · Stephanie Wang · Li Fei-Fei · Daniel Yamins -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Panel on "What neural systems can teach us about building better machine learning systems" »
Timothy Lillicrap · James J DiCarlo · Christopher Rozell · Viren Jain · Nathan Kutz · William Gray Roncal · Bingni Brunton -
2017 : Can brain data be used to reverse engineer the algorithms of human perception? »
James J DiCarlo -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 Oral: Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System »
Chengxu Zhuang · Jonas Kubilius · Mitra JZ Hartmann · Daniel Yamins -
2017 Poster: Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System »
Chengxu Zhuang · Jonas Kubilius · Mitra JZ Hartmann · Daniel Yamins -
2016 Poster: Deep Learning Models of the Retinal Response to Natural Scenes »
Lane McIntosh · Niru Maheswaranathan · Aran Nayebi · Surya Ganguli · Stephen Baccus -
2013 Poster: Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream »
Daniel L Yamins · Ha Hong · Charles Cadieu · James J DiCarlo -
2013 Tutorial: Mechanisms Underlying Visual Object Recognition: Humans vs. Neurons vs. Machines »
James J DiCarlo