Timezone: »
We take an unorthodox view of voting by expanding the design space to include both the elicitation rule, whereby voters map their (cardinal) preferences to votes, and the aggregation rule, which transforms the reported votes into collective decisions. Intuitively, there is a tradeoff between the communication requirements of the elicitation rule (i.e., the number of bits of information that voters need to provide about their preferences) and the efficiency of the outcome of the aggregation rule, which we measure through distortion (i.e., how well the utilitarian social welfare of the outcome approximates the maximum social welfare in the worst case). Our results chart the Pareto frontier of the communication-distortion tradeoff.
Author Information
Debmalya Mandal (Columbia University)
Ariel Procaccia (Harvard University)
Nisarg Shah (University of Toronto)
David Woodruff (Carnegie Mellon University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Efficient and Thrifty Voting by Any Means Necessary »
Wed. Dec 11th through Thu the 12th Room West Ballroom C
More from the Same Authors
-
2023 Poster: Lower Bounds on Adaptive Sensing for Matrix Recovery »
Praneeth Kacham · David Woodruff -
2023 Poster: Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming »
Gregory Dexter · Petros Drineas · David Woodruff · Taisuke Yasuda -
2023 Poster: Computing Approximate $\ell_p$ Sensitivities »
Swati Padmanabhan · David Woodruff · Richard Zhang -
2023 Poster: Strategyproof Voting under Correlated Beliefs »
Daniel Halpern · Rachel Li · Ariel Procaccia -
2023 Poster: Group Fairness in Peer Review »
Haris Aziz · Evi Micha · Nisarg Shah -
2023 Poster: The Distortion of Binomial Voting Defies Expectation »
Yannai A. Gonczarowski · Gregory Kehne · Ariel Procaccia · Benjamin Schiffer · Shirley Zhang -
2023 Poster: Explainable and Efficient Randomized Voting Rules »
Soroush Ebadian · Aris Filos-Ratsikas · Mohamad Latifian · Nisarg Shah -
2023 Poster: Hardness of Low Rank Approximation of Entrywise Transformed Matrix Products »
Tamas Sarlos · Xingyou Song · David Woodruff · Richard Zhang -
2023 Poster: On Robust Streaming for Learning with Experts: Algorithms and Lower Bounds »
David Woodruff · Fred Zhang · Samson Zhou -
2023 Poster: Near-Optimal $k$-Clustering in the Sliding Window Model »
David Woodruff · Peilin Zhong · Samson Zhou -
2022 Spotlight: Optimal Query Complexities for Dynamic Trace Estimation »
David Woodruff · Fred Zhang · Richard Zhang -
2022 Poster: Is Sortition Both Representative and Fair? »
Soroush Ebadian · Gregory Kehne · Evi Micha · Ariel Procaccia · Nisarg Shah -
2022 Poster: Optimal Query Complexities for Dynamic Trace Estimation »
David Woodruff · Fred Zhang · Richard Zhang -
2021 : Invited Talk: Ariel Procaccia (Harvard University) on Democracy and the Pursuit of Randomness »
Ariel Procaccia -
2021 Poster: Fair Algorithms for Multi-Agent Multi-Armed Bandits »
Safwan Hossain · Evi Micha · Nisarg Shah -
2020 Poster: Explainable Voting »
Dominik Peters · Ariel Procaccia · Alexandros Psomas · Zixin Zhou -
2020 Poster: Axioms for Learning from Pairwise Comparisons »
Ritesh Noothigattu · Dominik Peters · Ariel Procaccia -
2020 Poster: Ensuring Fairness Beyond the Training Data »
Debmalya Mandal · Samuel Deng · Suman Jana · Jeannette Wing · Daniel Hsu -
2020 Poster: Neutralizing Self-Selection Bias in Sampling for Sortition »
Bailey Flanigan · Paul Gölz · Anupam Gupta · Ariel Procaccia -
2019 Poster: Tight Dimensionality Reduction for Sketching Low Degree Polynomial Kernels »
Michela Meister · Tamas Sarlos · David Woodruff -
2019 Poster: Average Case Column Subset Selection for Entrywise $\ell_1$-Norm Loss »
Zhao Song · David Woodruff · Peilin Zhong -
2019 Poster: Envy-Free Classification »
Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia -
2019 Poster: Paradoxes in Fair Machine Learning »
Paul Gölz · Anson Kahng · Ariel Procaccia -
2019 Poster: Regularized Weighted Low Rank Approximation »
Frank Ban · David Woodruff · Richard Zhang -
2019 Poster: Total Least Squares Regression in Input Sparsity Time »
Huaian Diao · Zhao Song · David Woodruff · Xin Yang -
2019 Poster: Optimal Sketching for Kronecker Product Regression and Low Rank Approximation »
Huaian Diao · Rajesh Jayaram · Zhao Song · Wen Sun · David Woodruff -
2019 Poster: Towards a Zero-One Law for Column Subset Selection »
Zhao Song · David Woodruff · Peilin Zhong -
2018 Poster: Robust Subspace Approximation in a Stream »
Roie Levin · Anish Prasad Sevekari · David Woodruff -
2018 Spotlight: Robust Subspace Approximation in a Stream »
Roie Levin · Anish Prasad Sevekari · David Woodruff -
2018 Poster: On Coresets for Logistic Regression »
Alexander Munteanu · Chris Schwiegelshohn · Christian Sohler · David Woodruff -
2018 Spotlight: On Coresets for Logistic Regression »
Alexander Munteanu · Chris Schwiegelshohn · Christian Sohler · David Woodruff -
2018 Poster: Sublinear Time Low-Rank Approximation of Distance Matrices »
Ainesh Bakshi · David Woodruff -
2018 Spotlight: Sublinear Time Low-Rank Approximation of Distance Matrices »
Ainesh Bakshi · David Woodruff