Timezone: »
Poster
HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models
Sharon Zhou · Mitchell Gordon · Ranjay Krishna · Austin Narcomey · Li Fei-Fei · Michael Bernstein
Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #78
Generative models often use human evaluations to measure the perceived quality of their outputs. Automated metrics are noisy indirect proxies, because they rely on heuristics or pretrained embeddings. However, up until now, direct human evaluation strategies have been ad-hoc, neither standardized nor validated. Our work establishes a gold standard human benchmark for generative realism. We construct Human eYe Perceptual Evaluation (HYPE) a human benchmark that is (1) grounded in psychophysics research in perception, (2) reliable across different sets of randomly sampled outputs from a model, (3) able to produce separable model performances, and (4) efficient in cost and time. We introduce two variants: one that measures visual perception under adaptive time constraints to determine the threshold at which a model's outputs appear real (e.g. $250$ms), and the other a less expensive variant that measures human error rate on fake and real images sans time constraints. We test HYPE across six state-of-the-art generative adversarial networks and two sampling techniques on conditional and unconditional image generation using four datasets: CelebA, FFHQ, CIFAR-10, and ImageNet. We find that HYPE can track model improvements across training epochs, and we confirm via bootstrap sampling that HYPE rankings are consistent and replicable.
Author Information
Sharon Zhou (Stanford University)
Mitchell Gordon (Stanford University)
Ranjay Krishna (Stanford University)
Austin Narcomey (Stanford University)
Li Fei-Fei (Stanford University)
Michael Bernstein (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models »
Wed. Dec 11th 12:50 -- 01:05 AM Room West Exhibition Hall C + B3
More from the Same Authors
-
2021 : Neural Abstructions: Abstractions that Support Construction for Grounded Language Learning »
Kaylee Burns · Christopher D Manning · Li Fei-Fei -
2021 : What Matters in Learning from Offline Human Demonstrations for Robot Manipulation »
Ajay Mandlekar · Danfei Xu · Josiah Wong · Chen Wang · Li Fei-Fei · Silvio Savarese · Yuke Zhu · Roberto Martín-Martín -
2023 : Interactive Model Correction with Natural Language »
Yoonho Lee · Michelle Lam · Helena Vasconcelos · Michael Bernstein · Chelsea Finn -
2023 : Interactive Model Correction with Natural Language »
Yoonho Lee · Michelle Lam · Helena Vasconcelos · Michael Bernstein · Chelsea Finn -
2023 : Generative Agents: Interactive Simulacra »
Michael Bernstein -
2022 Poster: ELIGN: Expectation Alignment as a Multi-Agent Intrinsic Reward »
Zixian Ma · Rose Wang · Fei-Fei Li · Michael Bernstein · Ranjay Krishna -
2021 : Q&A with Afternoon Invited + Keynote Speakers + Closing Remarks »
Andrew Ng · Sharon Zhou -
2021 : Q&A with Morning Invited + Keynote Speakers + Closing Remarks »
Andrew Ng · Sharon Zhou -
2021 : Lightning Talks - Responsibility and Ethics »
Sharon Zhou · Carole-Jean Wu -
2021 : Human Computer Interaction and Crowdsourcing for Data Centric AI »
Michael Bernstein -
2021 Workshop: Data Centric AI »
Andrew Ng · Lora Aroyo · Greg Diamos · Cody Coleman · Vijay Janapa Reddi · Joaquin Vanschoren · Carole-Jean Wu · Sharon Zhou · Lynn He -
2020 : Closing remarks from Fei-Fei Li, Sequoia Professor of Computer Science, Stanford University & Co-Director of Stanford’s Human-Centered AI Institute »
Li Fei-Fei -
2020 : Q/A for invited talk #5 »
Li Fei-Fei -
2020 : Creating diverse tasks to catalyze robot learning »
Li Fei-Fei -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans -
2019 : Poster Session »
Ethan Harris · Tom White · Oh Hyeon Choung · Takashi Shinozaki · Dipan Pal · Katherine L. Hermann · Judy Borowski · Camilo Fosco · Chaz Firestone · Vijay Veerabadran · Benjamin Lahner · Chaitanya Ryali · Fenil Doshi · Pulkit Singh · Sharon Zhou · Michel Besserve · Michael Chang · Anelise Newman · Mahesan Niranjan · Jonathon Hare · Daniela Mihai · Marios Savvides · Simon Kornblith · Christina M Funke · Aude Oliva · Virginia de Sa · Dmitry Krotov · Colin Conwell · George Alvarez · Alex Kolchinski · Shengjia Zhao · Mitchell Gordon · Michael Bernstein · Stefano Ermon · Arash Mehrjou · Bernhard Schölkopf · John Co-Reyes · Michael Janner · Jiajun Wu · Josh Tenenbaum · Sergey Levine · Yalda Mohsenzadeh · Zhenglong Zhou -
2019 Poster: Regression Planning Networks »
Danfei Xu · Roberto Martín-Martín · De-An Huang · Yuke Zhu · Silvio Savarese · Li Fei-Fei -
2018 Poster: Learning to Play With Intrinsically-Motivated, Self-Aware Agents »
Nick Haber · Damian Mrowca · Stephanie Wang · Li Fei-Fei · Daniel Yamins -
2018 Poster: Learning to Decompose and Disentangle Representations for Video Prediction »
Jun-Ting Hsieh · Bingbin Liu · De-An Huang · Li Fei-Fei · Juan Carlos Niebles -
2018 Poster: Flexible neural representation for physics prediction »
Damian Mrowca · Chengxu Zhuang · Elias Wang · Nick Haber · Li Fei-Fei · Josh Tenenbaum · Daniel Yamins -
2017 : Keynote II: Fei-Fei Li, Stanford »
Li Fei-Fei -
2017 Poster: Label Efficient Learning of Transferable Representations acrosss Domains and Tasks »
Zelun Luo · Yuliang Zou · Judy Hoffman · Li Fei-Fei -
2016 : Knowledge Acquisition for Visual Question Answering via Iterative Querying »
Yuke Zhu · Joseph Lim · Li Fei-Fei -
2014 Poster: Deep Fragment Embeddings for Bidirectional Image Sentence Mapping »
Andrej Karpathy · Armand Joulin · Li Fei-Fei -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2012 Workshop: Big Data Meets Computer Vision: First International Workshop on Large Scale Visual Recognition and Retrieval »
Jia Deng · Samy Bengio · Yuanqing Lin · Li Fei-Fei -
2012 Poster: Shifting Weights: Adapting Object Detectors from Image to Video »
Kevin Tang · Vignesh Ramanathan · Li Fei-Fei · Daphne Koller -
2012 Demonstration: EVA: Engine for Visual Annotation »
Jia Deng · Joanathan Krause · Zhiheng Huang · Alexander C Berg · Li Fei-Fei -
2011 Poster: Fast and Balanced: Efficient Label Tree Learning for Large Scale Object Recognition »
Jia Deng · Sanjeev Satheesh · Alexander C Berg · Li Fei-Fei -
2011 Poster: Large-Scale Category Structure Aware Image Categorization »
Bin Zhao · Li Fei-Fei · Eric Xing -
2010 Session: Oral Session 10 »
Li Fei-Fei -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei