Timezone: »
Compute requirements are growing at an exponential rate, and optimizing these computer systems often involves complex high-dimensional combinatorial problems. Yet, current methods rely heavily on heuristics. Very recent work has outlined a broad scope where machine learning vastly outperforms these traditional heuristics: including scheduling, data structure design, microarchitecture, compilers, circuit design, and the control of warehouse scale computing systems. In order to continue to scale these computer systems, new learning approaches are needed. The goal of this workshop is to develop novel machine learning methods to optimize and accelerate software and hardware systems.
Machine Learning for Systems is an interdisciplinary workshop that brings together researchers in computer architecture and systems and machine learning. This workshop is meant to serve as a platform to promote discussions between researchers in the workshops target areas.
This workshop is part two of a two-part series with one day focusing on ML for Systems and the other on Systems for ML. Although the two workshops are being led by different organizers, we are coordinating our call for papers to ensure that the workshops complement each other and that submitted papers are routed to the appropriate venue.
Sat 9:00 a.m. - 9:10 a.m.
|
Opening
(
Presentation
)
|
🔗 |
Sat 9:10 a.m. - 9:45 a.m.
|
Invited Speaker: Eytan Bakshy
(
Invited Talk
)
|
Eytan Bakshy 🔗 |
Sat 9:45 a.m. - 10:30 a.m.
|
Break
|
🔗 |
Sat 10:30 a.m. - 11:00 a.m.
|
Poster Session 1
(
Poster Session
)
|
Hongzi Mao · Vikram Nathan · Ioana Baldini · Viswanath Sivakumar · Haonan Wang · Vinoj Yasanga Jayasundara Magalle Hewa · Zhan Shi · Samuel Kaufman · Joyce Fang · Giulio Zhou · Jialin Ding · Hao He · Miles Lubin
|
Sat 11:00 a.m. - 11:15 a.m.
|
Contributed Talk 1: A Weak Supervision Approach to Detecting Visual Anomalies for Automated Testing of Graphics Units
(
Contributed Talk
)
|
Adi Szeskin 🔗 |
Sat 11:15 a.m. - 11:30 a.m.
|
Contributed Talk 2: Learned TPU Cost Model for XLA Tensor Programs
(
Contributed Talk
)
|
Samuel Kaufman 🔗 |
Sat 11:30 a.m. - 11:45 a.m.
|
Contributed Talk 3: Learned Multi-dimensional Indexing
(
Contributed Talk
)
|
Vikram Nathan 🔗 |
Sat 11:45 a.m. - 12:00 p.m.
|
Contributed Talk 4: Neural Hardware Architecture Search
(
Contributed Talk
)
|
Yujun Lin 🔗 |
Sat 12:00 p.m. - 1:45 p.m.
|
Lunch
|
🔗 |
Sat 1:45 p.m. - 2:15 p.m.
|
Invited Speaker: Jeff Dean
(
Invited Talk
)
|
Jeff Dean 🔗 |
Sat 2:15 p.m. - 2:45 p.m.
|
Invited Speaker: Akanksha Jain
(
Invited Talk
)
|
Akanksha Jain 🔗 |
Sat 2:45 p.m. - 3:00 p.m.
|
Contributed Talk 5: Predictive Precompute with Recurrent Neural Networks
(
Contributed Talk
)
|
Hanson Wang 🔗 |
Sat 3:00 p.m. - 3:30 p.m.
|
Poster Session 2
(
Poster Session
)
|
Hanson Wang · Yujun Lin · Yixiao Duan · Aditya Paliwal · Ameer Haj-Ali · Ryan Marcus · Tom Hope · Qiumin Xu · Nham Le · Yuxiang Sun · Ross Cutler · Vikram Nathan · Min Sun
|
Sat 3:30 p.m. - 4:15 p.m.
|
Break
|
🔗 |
Sat 4:15 p.m. - 4:30 p.m.
|
Contributed Talk 6: Zero-Shot Learning for Fast Optimization of Computation Graphs
(
Contributed Talk
)
|
Aditya Paliwal 🔗 |
Sat 4:30 p.m. - 4:55 p.m.
|
Invited Speaker: Ion Stoica
(
Invited Talk
)
|
Ion Stoica 🔗 |
Sat 4:55 p.m. - 5:20 p.m.
|
Invited Speaker: Mohammad Alizadeh
(
Invited Talk
)
|
Mohammad Alizadeh 🔗 |
Sat 5:20 p.m. - 6:00 p.m.
|
Panel
(
Panel Discussion
)
|
🔗 |
Author Information
Milad Hashemi (Google)
Azalia Mirhoseini (Google Brain)
Anna Goldie (Google Brain / Stanford)
Kevin Swersky (Google)
Xinlei XU (NYU)
Jonathan Raiman (OpenAI)
Jonathan Raiman (Dali)
More from the Same Authors
-
2021 : Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks »
Yujun Yan · Milad Hashemi · Kevin Swersky · Yaoqing Yang · Danai Koutra -
2022 : Multi-objective Reinforcement Learning with Adaptive Pareto Reset for Prefix Adder Design »
Jialin Song · Rajarshi Roy · Jonathan Raiman · Robert Kirby · Neel Kant · Saad Godil · Bryan Catanzaro -
2022 : Netflix and Forget: Fast Severance From Memorizing Training Data in Recommendations »
Xinlei XU · Jiankai Sun · Xin Yang · Yuanshun Yao · Chong Wang -
2022 Workshop: Machine Learning for Systems »
Neel Kant · Martin Maas · Azade Nova · Benoit Steiner · Xinlei XU · Dan Zhang -
2022 : Invited talk: Azalia Mirhoseini »
Azalia Mirhoseini -
2021 : Closing Remarks »
Jonathan Raiman · Mimee Xu · Martin Maas · Anna Goldie · Azade Nova · Benoit Steiner -
2021 : Data-Driven Offline Optimization for Architecting Hardware Accelerators »
Aviral Kumar · Amir Yazdanbakhsh · Milad Hashemi · Kevin Swersky · Sergey Levine -
2021 : Interpretability of Machine Learning in Computer Systems: Analyzing a Caching Model »
Leon Sixt · Evan Liu · Marie Pellat · James Wexler · Milad Hashemi · Been Kim · Martin Maas -
2021 : Opening Remarks »
Jonathan Raiman · Anna Goldie · Benoit Steiner · Azade Nova · Martin Maas · Mimee Xu -
2021 Workshop: ML For Systems »
Benoit Steiner · Jonathan Raiman · Martin Maas · Azade Nova · Mimee Xu · Anna Goldie -
2021 Poster: Representing Long-Range Context for Graph Neural Networks with Global Attention »
Zhanghao Wu · Paras Jain · Matthew Wright · Azalia Mirhoseini · Joseph Gonzalez · Ion Stoica -
2020 Workshop: Machine Learning for Systems »
Anna Goldie · Azalia Mirhoseini · Jonathan Raiman · Martin Maas · Xinlei XU -
2020 Poster: Transferable Graph Optimizers for ML Compilers »
Yanqi Zhou · Sudip Roy · Amirali Abdolrashidi · Daniel Wong · Peter Ma · Qiumin Xu · Hanxiao Liu · Phitchaya Phothilimtha · Shen Wang · Anna Goldie · Azalia Mirhoseini · James Laudon -
2020 Oral: Transferable Graph Optimizers for ML Compilers »
Yanqi Zhou · Sudip Roy · Amirali Abdolrashidi · Daniel Wong · Peter Ma · Qiumin Xu · Hanxiao Liu · Phitchaya Phothilimtha · Shen Wang · Anna Goldie · Azalia Mirhoseini · James Laudon -
2020 Poster: Neural Execution Engines: Learning to Execute Subroutines »
Yujun Yan · Kevin Swersky · Danai Koutra · Parthasarathy Ranganathan · Milad Hashemi -
2020 Poster: Big Self-Supervised Models are Strong Semi-Supervised Learners »
Ting Chen · Simon Kornblith · Kevin Swersky · Mohammad Norouzi · Geoffrey E Hinton -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 : Poster Spotlights B (13 posters) »
Alberto Camacho · Chris Percy · Vaishak Belle · Beliz Gunel · Toryn Klassen · Tillman Weyde · Mohamed Ghalwash · Siddhant Arora · León Illanes · Jonathan Raiman · Qing Wang · Alexander Lew · So Yeon Min -
2019 : Posters and Coffee »
Sameer Kumar · Tomasz Kornuta · Oleg Bakhteev · Hui Guan · Xiaomeng Dong · Minsik Cho · Sören Laue · Theodoros Vasiloudis · Andreea Anghel · Erik Wijmans · Zeyuan Shang · Oleksii Kuchaiev · Ji Lin · Susan Zhang · Ligeng Zhu · Beidi Chen · Vinu Joseph · Jialin Ding · Jonathan Raiman · Ahnjae Shin · Vithursan Thangarasa · Anush Sankaran · Akhil Mathur · Martino Dazzi · Markus Löning · Darryl Ho · Emanuel Zgraggen · Supun Nakandala · Tomasz Kornuta · Rita Kuznetsova -
2019 Poster: Graph Normalizing Flows »
Jenny Liu · Aviral Kumar · Jimmy Ba · Jamie Kiros · Kevin Swersky -
2018 Workshop: Machine Learning for Systems »
Anna Goldie · Azalia Mirhoseini · Jonathan Raiman · Kevin Swersky · Milad Hashemi