Timezone: »
The growing field of Human-centric ML seeks to minimize the potential harms, risks, and burdens of big data technologies on the public, and at the same time, maximize their societal benefits. In this workshop, we address a wide range of challenges from diverse, multi-disciplinary viewpoints. We bring together experts from a diverse set of backgrounds. Our speakers are leading experts in ML, human-computer interaction, ethics, and law. Each of our speakers will focus on one core human-centred challenge (namely, fairness, accountability, interpretability, transparency, security, and privacy) in specific application domains (such as medicine, welfare programs, governance, and regulation). One of the main goals of this workshop is to help the community understand where it stands after a few years of rapid technical development and identify promising research directions to pursue in the years to come. Our speakers identify in their presentations 3-5 research directions that they consider to be of crucial importance. These directions are further debated in one of our panel discussions.
Fri 8:30 a.m. - 8:45 a.m.
|
Welcome and introduction
(
Talk
)
|
🔗 |
Fri 8:45 a.m. - 9:15 a.m.
|
Invited talk #1
(
Talk
)
|
Krishna Gummadi 🔗 |
Fri 9:15 a.m. - 10:00 a.m.
|
Contributed talks (3)
(
Talk
)
|
🔗 |
Fri 10:00 a.m. - 10:30 a.m.
|
Panel #1: On the role of industry, academia, and government in developing HCML
(
Panel
)
|
🔗 |
Fri 10:30 a.m. - 11:00 a.m.
|
Coffe break
(
Coffee
)
|
🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Invited talk #2
(
Talk
)
|
Deirdre Mulligan 🔗 |
Fri 11:30 a.m. - 12:00 p.m.
|
Contributed talks (2)
(
Talk
)
|
🔗 |
Fri 12:00 p.m. - 1:30 p.m.
|
Lunch and poster session
(
Lunch
)
|
🔗 |
Fri 1:30 p.m. - 2:00 p.m.
|
Invited talk #3
(
Talk
)
|
Aaron Roth 🔗 |
Fri 2:00 p.m. - 3:00 p.m.
|
Contributed talks (4)
(
Talk
)
|
🔗 |
Fri 3:00 p.m. - 3:30 p.m.
|
Coffee break
(
Coffee
)
|
🔗 |
Fri 3:30 p.m. - 4:00 p.m.
|
Invited talk #4
(
Talk
)
|
Finale Doshi-Velez 🔗 |
Fri 4:00 p.m. - 4:30 p.m.
|
Invited talk #5
(
Talk
)
|
Been Kim 🔗 |
Fri 4:30 p.m. - 5:00 p.m.
|
Panel #2: Future research directions and interdisciplinary collaborations in HCML
(
Panel
)
|
🔗 |
Fri 5:00 p.m. - 6:00 p.m.
|
Poster session
(
Posters
)
|
Jindong Gu · Alice Xiang · Atoosa Kasirzadeh · Zhiwei Han · Omar U. Florez · Frederik Harder · An-phi Nguyen · Amir Hossein Akhavan Rahnama · Michele Donini · Dylan Slack · Junaid Ali · Paramita Koley · Michiel Bakker · Anna Hilgard · Hailey James · Gonzalo Ramos · Jialin Lu · Jingying Yang · Margarita Boyarskaya · Martin Pawelczyk · Kacper Sokol · Mimansa Jaiswal · Umang Bhatt · David Alvarez-Melis · Aditya Grover · Charles Marx · Mengjiao (Sherry) Yang · Jingyan Wang · Gökhan Çapan · Hanchen Wang · Steffen Grünewälder · Moein Khajehnejad · Gourab Patro · Russell Kunes · Samuel Deng · Yuanting Liu · Luca Oneto · Mengze Li · Thomas Weber · Stefan Matthes · Duy Patrick Tu
|
Fri 6:00 p.m. - 6:15 p.m.
|
Closing remarks
(
Talk
)
|
🔗 |
Author Information
Plamen P Angelov (Lancaster University)
Prof. Angelov (MEng 1989, PhD 1993, DSc 2015) is a Fellow of the IEEE, of the IET and of the HEA. His PhD supervisor, Dr. Dimitar P. Filev is now Member of the National Academy of Engineering, USA. Prof. Angelov is Vice President of the International Neural Networks Society (INNS) for Conferences. He has 30 years of professional experience in high level research and holds a Personal Chair in Intelligent Systems at Lancaster University, UK. He founded in 2010 the Intelligent Systems Research group which he led till 2014 when he founded the Data Science group at the School of Computing and Communications before going on sabbatical in 2017 and established LIRA (Lancaster Intelligent, Robotic and Autonomous systems) Research Centre (www.lancaster.ac.uk/lira ) which includes over 40 academics across different Faculties and Departments of the University. He is a founding member of the Data Science Institute and of the CyberSecurity Academic Centre of Excellence at Lancaster. He has authored or co-authored 300 peer-reviewed publications in leading journals, peer-reviewed conference proceedings, 3 granted patents, 3 research monographs (by Wiley, 2012 and Springer, 2002 and 2018) cited over 8800 times with an h-index of 48 and i10-index of 156. His single most cited paper has 940+ citations. He has an active research portfolio in the area of explainable AI, computational intelligence and machine learning and internationally recognised results into online and evolving learning and algorithms for knowledge extraction in the form of human-intelligible rule-based systems. Prof. Angelov leads numerous projects (including several multimillion ones) funded by UK research councils, EU, industry, UK MoD. His research was recognised by ‘The Engineer Innovation and Technology 2008 Special Award’ and ‘For outstanding Services’ (2013) by IEEE and INNS. He is also the founding co-Editor-in-Chief of Springer’s journal on Evolving Systems and Associate Editor of several leading international scientific journals, including IEEE Transactions on Cybernetics, IEEE Transactions on Fuzzy Systems, Fuzzy Sets and Systems, Soft Computing, etc. He gave over two dozen key note/plenary talks at high profile conferences. Prof. Angelov was General co-Chair of a number of high profile IEEE conferences and is the founding Chair of the Technical Committee on Evolving Intelligent Systems, SMC Society of the IEEE and was previously chairing the Standards Committee of the Computational Intelligent Society of the IEEE (2010-2012). He was also a member of International Program Committee of over 100 international conferences (primarily IEEE).
Nuria Oliver (Data-Pop Alliance)
Adrian Weller (Cambridge, Alan Turing Institute)
Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, where he is also a Turing Fellow leading work on safe and ethical AI. He is a Principal Research Fellow in Machine Learning at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. He serves on several boards including the Centre for Data Ethics and Innovation. Previously, Adrian held senior roles in finance.
Manuel Rodriguez (MPI SWS)
Isabel Valera (Max Planck Institute for Intelligent Systems)
Silvia Chiappa (DeepMind)
Hoda Heidari (ETH Zürich)
Niki Kilbertus (MPI Tuebingen & Cambridge)
More from the Same Authors
-
2021 : Prequential MDL for Causal Structure Learning with Neural Networks »
Jorg Bornschein · Silvia Chiappa · Alan Malek · Nan Rosemary Ke -
2021 : Reinforcement Learning Under Algorithmic Triage »
Eleni Straitouri · Adish Singla · Vahid Balazadeh Meresht · Manuel Rodriguez -
2022 Poster: Counterfactual Temporal Point Processes »
Kimia Noorbakhsh · Manuel Rodriguez -
2022 Poster: Scalable Infomin Learning »
Yanzhi Chen · weihao sun · Yingzhen Li · Adrian Weller -
2022 : Pragmatic Fairness: Optimizing Policies with Outcome Disparity Control »
Limor Gultchin · Siyuan Guo · Alan Malek · Silvia Chiappa · Ricardo Silva -
2022 : Conformal Prediction for Resource Prioritisation in Predicting Rare and Dangerous Outcomes »
Varun Babbar · Umang Bhatt · Miri Zilka · Adrian Weller -
2023 Poster: Quasi-Monte Carlo Graph Random Features »
Isaac Reid · Adrian Weller · Krzysztof M Choromanski -
2023 Poster: Use perturbations when learning from explanations »
Juyeon Heo · Vihari Piratla · Matthew Wicker · Adrian Weller -
2023 Poster: Finding Counterfactually Optimal Action Sequences in Continuous State Spaces »
Stratis Tsirtsis · Manuel Rodriguez -
2023 Poster: Dense-Exponential Random Features: Sharp Positive Estimators of the Gaussian Kernel »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2023 Poster: Diffused Redundancy in Pre-trained Representations »
Vedant Nanda · Till Speicher · John Dickerson · Krishna Gummadi · Soheil Feizi · Adrian Weller -
2023 Poster: Controlling Text-to-Image Diffusion by Orthogonal Finetuning »
Zeju Qiu · Weiyang Liu · Haiwen Feng · Yuxuan Xue · Yao Feng · Zhen Liu · Dan Zhang · Adrian Weller · Bernhard Schölkopf -
2023 Poster: Human-Aligned Calibration for AI-Assisted Decision Making »
Nina Corvelo Benz · Manuel Rodriguez -
2023 Poster: Certification of Distributional Individual Fairness »
Matthew Wicker · Vihari Piratla · Adrian Weller -
2023 Poster: Learning to Receive Help: Intervention-Aware Concept Embedding Models »
Mateo Espinosa Zarlenga · Katie Collins · Krishnamurthy Dvijotham · Adrian Weller · Zohreh Shams · Mateja Jamnik -
2022 Workshop: HCAI@NeurIPS 2022, Human Centered AI »
Michael Muller · Plamen P Angelov · Hal Daumé III · Shion Guha · Q.Vera Liao · Nuria Oliver · David Piorkowski -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Counterfactual Temporal Point Processes »
Kimia Noorbakhsh · Manuel Rodriguez -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Chefs' Random Tables: Non-Trigonometric Random Features »
Valerii Likhosherstov · Krzysztof M Choromanski · Kumar Avinava Dubey · Frederick Liu · Tamas Sarlos · Adrian Weller -
2022 Poster: A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets »
Miri Zilka · Bradley Butcher · Adrian Weller -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2021 Workshop: Human Centered AI »
Michael Muller · Plamen P Angelov · Shion Guha · Marina Kogan · Gina Neff · Nuria Oliver · Manuel Rodriguez · Adrian Weller -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 : Invited Talk: Path-specific effects and ML fairness »
Silvia Chiappa -
2021 Poster: MobTCast: Leveraging Auxiliary Trajectory Forecasting for Human Mobility Prediction »
Hao Xue · Flora Salim · Yongli Ren · Nuria Oliver -
2021 Poster: Differentiable Learning Under Triage »
Nastaran Okati · Abir De · Manuel Rodriguez -
2021 Poster: Counterfactual Explanations in Sequential Decision Making Under Uncertainty »
Stratis Tsirtsis · Abir De · Manuel Rodriguez -
2020 : Contributed Talk 3: Algorithmic Recourse: from Counterfactual Explanations to Interventions »
Amir-Hossein Karimi · Bernhard Schölkopf · Isabel Valera -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · Aurélien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Poster: Ode to an ODE »
Krzysztof Choromanski · Jared Quincy Davis · Valerii Likhosherstov · Xingyou Song · Jean-Jacques Slotine · Jacob Varley · Honglak Lee · Adrian Weller · Vikas Sindhwani -
2020 Spotlight: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2019 Workshop: Privacy in Machine Learning (PriML) »
Borja Balle · Kamalika Chaudhuri · Antti Honkela · Antti Koskela · Casey Meehan · Mi Jung Park · Mary Anne Smart · Mary Anne Smart · Adrian Weller -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Leader Stochastic Gradient Descent for Distributed Training of Deep Learning Models »
Yunfei Teng · Wenbo Gao · François Chalus · Anna Choromanska · Donald Goldfarb · Adrian Weller -
2018 Workshop: Privacy Preserving Machine Learning »
Adria Gascon · Aurélien Bellet · Niki Kilbertus · Olga Ohrimenko · Mariana Raykova · Adrian Weller -
2018 : Manuel Gomez Rodriguez - Enhancing the Accuracy and Fairness of Human Decision Making »
Manuel Rodriguez -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Poster: Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making »
Hoda Heidari · Claudio Ferrari · Krishna Gummadi · Andreas Krause -
2018 Poster: Enhancing the Accuracy and Fairness of Human Decision Making »
Isabel Valera · Adish Singla · Manuel Gomez Rodriguez -
2017 : Invited talk: Challenges for Transparency »
Adrian Weller -
2017 : Closing remarks »
Adrian Weller -
2017 Symposium: Kinds of intelligence: types, tests and meeting the needs of society »
José Hernández-Orallo · Zoubin Ghahramani · Tomaso Poggio · Adrian Weller · Matthew Crosby -
2017 Poster: From Parity to Preference-based Notions of Fairness in Classification »
Muhammad Bilal Zafar · Isabel Valera · Manuel Rodriguez · Krishna Gummadi · Adrian Weller -
2017 Poster: The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings »
Krzysztof Choromanski · Mark Rowland · Adrian Weller -
2017 Poster: Uprooting and Rerooting Higher-Order Graphical Models »
Mark Rowland · Adrian Weller -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Symposium: Machine Learning and the Law »
Adrian Weller · Thomas D. Grant · Conrad McDonnell · Jatinder Singh -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2014 Poster: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara -
2014 Oral: Clamping Variables and Approximate Inference »
Adrian Weller · Tony Jebara