Timezone: »

 
Workshop
Minding the Gap: Between Fairness and Ethics
Igor Rubinov · Risi Kondor · Jack Poulson · Manfred K. Warmuth · Emanuel Moss · Alexa Hagerty

Fri Dec 13 08:00 AM -- 06:00 PM (PST) @ East Meeting Rooms 8 + 15
Event URL: https://mindingthegap.github.io/ »

When researchers and practitioners, as well as policy makers and the public, discuss the impacts of deep learning systems, they draw upon multiple conceptual frames that do not sit easily beside each other. Questions of algorithmic fairness arise from a set of concerns that are similar, but not identical, to those that circulate around AI safety, which in turn overlap with, but are distinct from, the questions that motivate work on AI ethics, and so on. Robust bodies of research on privacy, security, transparency, accountability, interpretability, explainability, and opacity are also incorporated into each of these frames and conversations in variable ways. These frames reveal gaps that persist across both highly technical and socially embedded approaches, and yet collaboration across these gaps has proven challenging.

Fairness, Ethics, and Safety in AI each draw upon different disciplinary prerogatives, variously centering applied mathematics, analytic philosophy, behavioral sciences, legal studies, and the social sciences in ways that make conversation between these frames fraught with misunderstandings. These misunderstandings arise from a high degree of linguistic slippage between different frames, and reveal the epistemic fractures that undermine valuable synergy and productive collaboration. This workshop focuses on ways to translate between these ongoing efforts and bring them into necessary conversation in order to understand the profound impacts of algorithmic systems in society.

Author Information

Igor Rubinov (Dovetail Labs)
Risi Kondor (U. Chicago)

Risi Kondor joined the Flatiron Institute in 2019 as a Senior Research Scientist with the Center for Computational Mathematics. Previously, Kondor was an Associate Professor in the Department of Computer Science, Statistics, and the Computational and Applied Mathematics Initiative at the University of Chicago. His research interests include computational harmonic analysis and machine learning. Kondor holds a Ph.D. in Computer Science from Columbia University, an MS in Knowledge Discovery and Data Mining from Carnegie Mellon University, and a BA in Mathematics from the University of Cambridge. He also holds a diploma in Computational Fluid Dynamics from the Von Karman Institute for Fluid Dynamics and a diploma in Physics from Eötvös Loránd University in Budapest.

Jack Poulson (Tech Inquiry)
Manfred K. Warmuth (Google Brain)
Emanuel Moss (CUNY Graduate Center | Data & Society)
Alexa Hagerty (University of Cambridge; Dovetail Labs)

More from the Same Authors