Timezone: »
Medical imaging and radiology are facing a major crisis with an ever-increasing complexity and volume of data along an immense economic pressure. The current advances and widespread use of imaging technologies now overload the human capacity of interpreting medical images, dangerously posing a risk of missing critical patterns of diseases. Machine learning has emerged as a key technology for developing novel tools in computer aided diagnosis, therapy and intervention. Still, progress is slow compared to other fields of visual recognition, which is mainly due to the domain complexity and constraints in clinical applications, i.e., robustness, high accuracy and reliability.
“Medical Imaging meets NeurIPS” aims to bring researchers together from the medical imaging and machine learning communities to discuss the major challenges in the field and opportunities for research and novel applications. The proposed event will be the continuation of a successful workshop organized in NeurIPS 2017 and 2018 (https://sites.google.com/view/med-nips-2018). It will feature a series of invited speakers from academia, medical sciences and industry to give an overview of recent technological advances and remaining major challenges.
Sat 8:00 a.m. - 8:15 a.m.
|
Opening Remarks
(
Talks
)
|
Hervé Lombaert · Ben Glocker · Ender Konukoglu · Marleen de Bruijne · Aasa Feragen · Ipek Oguz · Jonas Teuwen 🔗 |
Sat 8:15 a.m. - 9:00 a.m.
|
Keynote I – Rene Vidal (Johns Hopkins University)
(
Talks
)
Machine Learning in Hematology: Reinventing the Blood Test |
René Vidal 🔗 |
Sat 9:00 a.m. - 10:00 a.m.
|
Oral Session I – Methods
(
Talks
)
09:00 – Multimodal Multitask Representation Learning for Metadata Prediction in Pathology – Weng, Cai, Lin, Tan, Chen 09:20 – A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities – Kohl, Romera-Paredes, Haier-Hein, Rezende, Eslami, Kohli, Zisserman, Ronneberger 09:40 – Task incremental learning of Chest X-ray data on compact architectures – Patra |
Wei-Hung Weng · Simon Kohl · Arijit Patra 🔗 |
Sat 10:00 a.m. - 10:30 a.m.
|
Coffee Break + Poster Session I
(
Posters
)
Multimodal Multitask Representation Learning for Metadata Prediction in Pathology – Weng, Cai, Lin, Tan, Chen [ORAL+Poster] A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities – Kohl, Romera-Paredes, Haier-Hein, Rezende, Eslami, Kohli, Zisserman, Ronneberger [ORAL+Poster] Task incremental learning of Chest X-ray data on compact architectures – Patra [ORAL+Poster] Multimodal Self-Supervised Learning for Medical Image Analysis – Taleb, Lippert, Nabi, Klein [ORAL+Poster] Evolution-based Fine-tuning of CNNs for Prostate Cancer Detection – Namdar, Gujrathi, Haider, Khalvati [ORAL+Poster] Unsupervised deep clustering for predictive texture pattern discovery in medical images – Perkonigg, Sobotka, Ba-Ssalamah, Langs [ORAL+Poster] Large-scale classification of breast MRI exams using deep convolutional networks – Gong, Muckley, Wu, Makino, Kim, Heacock, Moy, Knoll, Geras [ORAL+Poster] Bipartite Distance For Shape-Aware Landmark Detection in Spinal X-Rays – Zubaer, Huang, Fan, Cheung, To, Qian, Terzopoulos GAN-enhanced Conditional Echocardiogram – Abdi, Tsang, Abolmaesumi Invasiveness Prediction of Pulmonary Adenocarcinomas Using Deep Feature Fusion Networks – Li, Ma, Li Push it to the Limit: Discover Edge-Cases in Image Data with Autoencoders – Manakov, Tresp, Maximilian Noise-aware PET image Enhancement with Adaptive Deep Learning – Xiang, Wang, Gong, Zaharchuk, Zhang clDice - a Novel Connectivity-Preserving Loss Function for Vessel Segmentation – Paetzold, Shit, Ezhov, Tetteh, Ertuerk, Menze Machine Learning with Multi-Site Imaging Data: An Empirical Study on the Impact of Scanner Effects – Glocker, Robinson, Coelho de Castro, Dou, Konukoglu Extraction of hierarchical functional connectivity components in human brain using resting-state fMRI – Sahoo, Bassett, Davatzikos A Study into Echocardiography View Conversion – Abdi, Jafari, Fels, Tsang, Abolmaesumi Variable Projection optimization for Intravoxel Incoherent Motion (IVIM) MRI estimation – Fadnavis, Garyfallidis Boosting Liver and Lesion Segmentation from CT Scans by Mask Mining – Roth, Konopczynski, Hesser Unsupervised Sparse-view Backprojection via Convolutional and Spatial Transformer Networks – Liu, Sajda Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis – Zhang, Wei, Zhao, Niu, Wu, Tan, Huang Image Quality Assessment for Rigid Motion Compensation – Preuhs, Manhart, Roser, Stimpel, Syben, Psychogios, Kowarschik, Maier Harnessing spatial MRI normalization: patch individual filter layers for CNNs – Eitel, Albrecht, Paul, Ritter Binary Mode Multinomial Deep Learning Model for more efficient Automated Diabetic Retinopathy Detection – Trivedi, Desbiens, Gross, Ferres, Dodhia PILOT: Physics-Informed Learned Optimal Trajectories for Accelerated MRI – Weiss, Senouf, Vedula Variational Inference and Bayesian CNNs for Uncertainty Estimation in Multi-Factorial Bone Age Prediction – Stern, Urschler, Payer, Eggenreich In-plane organ motion prediction using a recurrent encoder-decoder framework – Vazquez Romaguera, Plantefeve, Kadoury Separation of target anatomical structure and occlusions in thoracic X-ray images – Hofmanninger, Langs Knee Cartilage Segmentation Using Diffusion-Weighted MRI – Duarte, Hedge, Kaku, Mohan, Raya Learning to estimate label uncertainty for automatic radiology report parsing – Olatunji, Yao Multi-defect microscopy image restoration under limited data conditions – Razdaibiedina, Velayutham, Modi |
Wei-Hung Weng · Simon Kohl · Aiham Taleb · Arijit Patra · Khashayar Namdar · Matthias Perkonigg · Shizhan Gong · Abdullah-Al-Zubaer Imran · Amir Abdi · Ilja Manakov · Johannes C. Paetzold · Ben Glocker · Dushyant Sahoo · Shreyas Fadnavis · Karsten Roth · Xueqing Liu · Yifan Zhang · Alexander Preuhs · Fabian Eitel · Anusua Trivedi · Tomer Weiss · Darko Stern · Liset Vazquez Romaguera · Johannes Hofmanninger · Aakash Kaku · Oloruntobiloba Olatunji · Anastasia Razdaibiedina · Tao Zhang
|
Sat 10:30 a.m. - 11:15 a.m.
|
Keynote II – Julia Schnabel (King's College London)
(
Talks
)
Deep learning for medical image quality control |
Julia Schnabel 🔗 |
Sat 11:15 a.m. - 12:35 p.m.
|
Oral Session II – Image Analysis and Segmentation
(
Talks
)
11:15 – Multimodal Self-Supervised Learning for Medical Image Analysis – Taleb, Lippert, Nabi, Klein 11:35 – Evolution-based Fine-tuning of CNNs for Prostate Cancer Detection – Namdar, Gujrathi, Haider, Khalvati 11:55 – Unsupervised deep clustering for predictive texture pattern discovery in medical images – Perkonigg, Sobotka, Ba-Ssalamah, Langs 12:15 – Large-scale classification of breast MRI exams using deep convolutional networks – Gong, Muckley, Wu, Makino, Kim, Heacock, Moy, Knoll, Geras |
Aiham Taleb · Khashayar Namdar · Matthias Perkonigg · Shizhan Gong 🔗 |
Sat 12:35 p.m. - 2:00 p.m.
|
Lunch
|
🔗 |
Sat 2:00 p.m. - 2:45 p.m.
|
Keynote III – Leo Grady (Paige AI)
(
Talks
)
Changing the Paradigm of Pathology: AI and Computational Diagnostics |
Leo Grady 🔗 |
Sat 2:45 p.m. - 3:45 p.m.
|
Oral Session III – Imaging
(
Talks
)
14:45 – High Resolution Medical Image Analysis with Spatial Partitioning – Hou, Cheng, Shazeer, Parmar, Li, Korfiatis, Drucker, Blezek, Song 15:05 – Estimating localized complexity of white-matter wiring with GANs – Hallgrimsson, Sharan, Grafton, Singh 15:25 – Training a Variational Network for use on 3D High Resolution MRI Data in 1 Day – Kames, Doucette, Rauscher |
Niki Parmar · Haraldur Hallgrimsson · Christian Kames 🔗 |
Sat 3:45 p.m. - 4:15 p.m.
|
Coffee Break + Poster Session II
(
Posters
)
High Resolution Medical Image Analysis with Spatial Partitioning – Hou, Cheng, Shazeer, Parmar, Li, Korfiatis, Drucker, Blezek, Song [ORAL+Poster] Estimating localized complexity of white-matter wiring with GANs – Hallgrimsson, Sharan, Grafton, Singh [ORAL+Poster] Training a Variational Network for use on 3D High Resolution MRI Data in 1 Day – Kames, Doucette, Rauscher [ORAL+Poster] Saliency cues for continual learning of ultrasound – Patra End-to-End Fully Automatic Segmentation of Scoliotic Vertebrae from Spinal X-Ray Images – Imran, Huang, Tang, Fan, Cheung, To, Qian, Terzepoulos Hepatocellular Carcinoma Intra-arterial Treatment Response Prediction for Improved Therapeutic Decision-Making – Yang, Dvornek, Zhang, Chapiro, Lin, Abajian, Duncan High- and Low-level image component decomposition using VAEs for improved reconstruction and anomaly detection – Zimmerer, Petersen, Maier-Hein Radiologist Validated Systematic Search over Deep Neural Networks for Screening Musculoskeletal Radiographs – Chakravarty, Sheet, Ghosh, Sarkar, Sethuraman A Biased Sampling Network to Localise Landmarks for Automated Disease Diagnosis – Schobs, Zhou, Cogliano, Swift, Lu Variational inference based assessment of mammographic lesion classification algorithms under distribution shift – Gossmann, Cha, Sun Batch-wise Dice Loss: Rethinking the Data Imbalance for Medical Image Segmentation – Chang, Lin, Wu, Chen, Hsu Towards Artifact Rejection in Microscopic Urinalysis – Dutt Analysis of focal loss with noisy labels – Yao, Jadhav Data Augmentation for Early Stage Lung Nodules using Deep Image Prior and CycleGan – Martinez Manzanera, Ellis, Baltatzis, Devaraj, Desai, Le Golgoc, Nair, Glocker, Schnabel Neural Ordinary Differential Equations for Semantic Segmentation of Individual Colon Glands – Pinckaers, Litjens Class-Aware CycleGAN: A domain adaptation method for mammography and tomosynthesis – Dalmis, Birhanu, Vanegas, Kallenerg, Kroes Tracking-Assisted Segmentation of Biological Cells – Gupta, de Bruin, Panteli, Gavves Deep learning feature based medical image retrieval for large-scale datasets – Haq, Moradi, Wang Generating CT-scans with 3D Generative Adversarial Networks Using a Supercomputer – Ruhe, Codreanu, va Leeuwen, Podareanu, Saletore, Teuwen Meta-SVDD: Probabilistic Meta-Learning for One-Class Classification in Cancer Histology Images – Gamper, Chan, Tsang, Snead, Rajpoot One-Click Spine MRI – De Goyeneche, Peterson, He, Addy, Santos Improved generalizability of deep-learning based low dose volumetric contrast-enhanced MRI – Tamir, Pasumarthi, Gong, Zaharchuk, Zhang Deep Recursive Bayesian Maximal Path for Fully Automatic Extraction of Coronary Arteries in CT Images – Jeon, Shim, Chang A Deep Multi-Modal Method for Patient Wound Healing Assessment – Oota, Rowtula, Mohammed, Galitz, Liu, Gupta Signal recovery with un-trained convolutional neural networks – Heckel On the Similarity of Deep Learning Representations Across Didactic and Adversarial Examples – Douglas, Farahani Generative Smoke Removal – Sidorov, Wang, Alaya-Chekh Towards High Fidelity Direct-Contrast Synthesis from Magnetic Resonance Fingerprinting – Wang, Karasan, Doneva, Tan HR-CAMs : Using multi-level features for precise discriminative localization of pathology – Ingalhalikar, Shinde, Chougule, Saini Towards Autism detection on brain structural MRI scans with Adversarially Learned Inference – Garcia Neural Network Compression using Reinforcement Learning in Medical Image Segmentation – Chhabra, Soni, Avinash |
Niki Parmar · Haraldur Hallgrimsson · Christian Kames · Arijit Patra · Abdullah-Al-Zubaer Imran · Junlin Yang · David Zimmerer · Arunava Chakravarty · Lawrence Schobs · Alexej Gossmann · TUNG-I CHEN · Tarun Dutt · Li Yao · Octavio Eleazar Martinez Manzanera · Johannes Pinckaers · Mehmet Ufuk Dalmis · Deepak Gupta · Nandinee Haq · David Ruhe · Jevgenij Gamper · Alfredo De Goyeneche Macaya · Jonathan Tamir · Byunghwan Jeon · SUBBAREDDY OOTA · Reinhard Heckel · Pamela K Douglas · Oleksii Sidorov · Ke Wang · Melanie Garcia · Ravi Soni · Ankita Shukla
|
Sat 4:15 p.m. - 5:00 p.m.
|
Keynote IV – Daniel Sodickson (NYU Langone Health)
(
Talks
)
AI and Radiology: How machine learning will change the way we see patients, and the way we see ourselves |
Daniel Sodickson 🔗 |
Sat 5:00 p.m. - 6:00 p.m.
|
fastMRI Challenge Talks
(
Talks
)
3 Winner Talks of fastMRI |
Nafisa Yakubova · Nicola Pezzotti · Puyang Wang · Larry Zitnick · Dimitrios Karkalousos · Shanhui Sun · Matthan Caan · Tullie Murrell · Patrick Putzky 🔗 |
Sat 6:00 p.m. - 6:05 p.m.
|
Closing Remarks
(
Talks
)
|
🔗 |
Author Information
Hervé Lombaert (ETS Montreal / Inria)
Hervé is Associate Professor at ETS Montreal, Canada and Affiliated Research Scientist at Inria, France - His research interests are in Statistics on Shapes, Data & Medical Images. He had the chance to work in multiple centers, including Microsoft Research (Cambridge, UK), Siemens Corporate Research (Princeton, NJ), Inria Sophia-Antipolis (France), McGill University (Canada), and Polytechnique Montreal (Canada). He is also a recipient of the François Erbsmann Prize, a top prize in Medical Image Analysis, earned a Best Thesis Award at Polytechnique Montreal, as well as several other prizes and fellowships - Hervé co-organized several workshops and special sessions in major international conferences, including NIPS and ICML, on Medical Image Analysis.
Ben Glocker (Imperial College London)
Ender Konukoglu (ETH Zurich)
Marleen de Bruijne (Erasmus MC/University of Copenhagen)
Aasa Feragen (University of Copenhagen, Denmark)
Ipek Oguz (Vanderbilt University)
Jonas Teuwen (Radboud University Medical Center / Netherlands Cancer Institute)
More from the Same Authors
-
2022 : A Framework for Generating 3D Shape Counterfactuals »
Rajat Rasal · Daniel C. Castro · Nick Pawlowski · Ben Glocker -
2022 : Metrics Reloaded »
Annika Reinke · Lena Maier-Hein · Patrick Scholz · Minu D. Tizabi · Evangelia Christodoulou · Ben Glocker · Fabian Isensee · Jens Kleesiek · Michal Kozubek · Mauricio Reyes · Michael A. Riegler · Manuel Wiesenfarth · Michael Baumgartner · Matthias Eisenmann · Doreen Heckmann-Nötzel · A. Kavur · Tim Rädsch · Laura Acion · Michela Antonelli · Tal Arbel · Spyridon Bakas · Pete Bankhead · Arriel Benis · Florian Buettner · M. Jorge Cardoso · Veronika Cheplygina · Beth Cimini · Gary Collins · Keyvan Farahani · Luciana Ferrer · Adrian Galdran · Bram van Ginneken · Robert Haase · Daniel Hashimoto · Michael Hoffman · Merel Huisman · Pierre Jannin · Charles Kahn · Dagmar Kainmueller · Alexandros Karargyris · Bernhard Kainz · Alan Karthikesalingam · Hannes Kenngott · Florian Kofler · Annette Kopp-Schneider · Anna Kreshuk · Tahsin Kurc · Bennett Landman · Geert Litjens · Amin Madani · Klaus H. Maier-Hein · Anne Martel · Peter Mattson · Erik Meijering · Bjoern Menze · David Moher · Karel G.M. Moons · Henning Mueller · Brennan Nichyporuk · Felix Nickel · Jens Petersen · Nasir Rajpoot · Nicola Rieke · Julio Saez-Rodriguez · Clarisa Sanchez · Shravya Shetty · Maarten van Smeden · Carole Sudre · Ronald Summers · Abdel Aziz Taha · Sotirios Tsaftaris · Ben Ben Van Calster · Gaël Varoquaux · Paul Jäger -
2023 Poster: Canonical normalizing flows for manifold learning »
Kyriakos Flouris · Ender Konukoglu -
2023 Poster: Expert load matters: operating networks at high accuracy and low manual effort »
Sara Sangalli · Ertunc Erdil · Ender Konukoglu -
2022 Workshop: Medical Imaging meets NeurIPS »
DOU QI · Konstantinos Kamnitsas · Yuankai Huo · Xiaoxiao Li · Daniel Moyer · Danielle Pace · Jonas Teuwen · Islem Rekik -
2021 Workshop: Medical Imaging meets NeurIPS »
DOU QI · Marleen de Bruijne · Ben Glocker · Aasa Feragen · Herve Lombaert · Ipek Oguz · Jonas Teuwen · Islem Rekik · Darko Stern · Xiaoxiao Li -
2021 Poster: Constrained Optimization to Train Neural Networks on Critical and Under-Represented Classes »
Sara Sangalli · Ertunc Erdil · Andeas Hötker · Olivio Donati · Ender Konukoglu -
2021 Poster: Spot the Difference: Detection of Topological Changes via Geometric Alignment »
Per Steffen Czolbe · Aasa Feragen · Oswin Krause -
2020 Workshop: Medical Imaging Meets NeurIPS »
Jonas Teuwen · Qi Dou · Ben Glocker · Ipek Oguz · Aasa Feragen · Hervé Lombaert · Ender Konukoglu · Marleen de Bruijne -
2020 : Introduction by Ben Glocker »
Ben Glocker -
2020 Poster: Contrastive learning of global and local features for medical image segmentation with limited annotations »
Krishna Chaitanya · Ertunc Erdil · Neerav Karani · Ender Konukoglu -
2020 Oral: Contrastive learning of global and local features for medical image segmentation with limited annotations »
Krishna Chaitanya · Ertunc Erdil · Neerav Karani · Ender Konukoglu -
2020 Poster: Deep Structural Causal Models for Tractable Counterfactual Inference »
Nick Pawlowski · Daniel Coelho de Castro · Ben Glocker -
2020 Poster: Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty »
Miguel Monteiro · Loic Le Folgoc · Daniel Coelho de Castro · Nick Pawlowski · Bernardo Marques · Konstantinos Kamnitsas · Mark van der Wilk · Ben Glocker -
2019 : Coffee Break + Poster Session I »
Wei-Hung Weng · Simon Kohl · Aiham Taleb · Arijit Patra · Khashayar Namdar · Matthias Perkonigg · Shizhan Gong · Abdullah-Al-Zubaer Imran · Amir Abdi · Ilja Manakov · Johannes C. Paetzold · Ben Glocker · Dushyant Sahoo · Shreyas Fadnavis · Karsten Roth · Xueqing Liu · Yifan Zhang · Alexander Preuhs · Fabian Eitel · Anusua Trivedi · Tomer Weiss · Darko Stern · Liset Vazquez Romaguera · Johannes Hofmanninger · Aakash Kaku · Oloruntobiloba Olatunji · Anastasia Razdaibiedina · Tao Zhang -
2019 : Opening Remarks »
Hervé Lombaert · Ben Glocker · Ender Konukoglu · Marleen de Bruijne · Aasa Feragen · Ipek Oguz · Jonas Teuwen -
2019 Poster: Domain Generalization via Model-Agnostic Learning of Semantic Features »
Qi Dou · Daniel Coelho de Castro · Konstantinos Kamnitsas · Ben Glocker -
2018 : Closing remarks »
Ender Konukoglu · Ben Glocker · Hervé Lombaert · Marleen de Bruijne -
2018 : Welcome »
Ender Konukoglu · Ben Glocker · Hervé Lombaert · Marleen de Bruijne -
2018 Workshop: Medical Imaging meets NIPS »
Ender Konukoglu · Ben Glocker · Hervé Lombaert · Marleen de Bruijne -
2017 : Closing »
Ben Glocker · Ender Konukoglu · Hervé Lombaert · Kanwal Bhatia -
2017 : Poster session - Afternoon »
Yongchan Kwon · Young-geun Kim · Ender Konukoglu · Peter Li · John Guibas · Tejpal Virdi · Kuldeep Kumar · Morteza Mardani · Jelmer Wolterink · Enhao Gong · Natalia Antropova · Johannes Stelzer · Rene Bidart · Wei-Hung Weng · Martin Rajchl · Marc Górriz · Vineeta Singh · Christopher Sandino · Hiba Chougrad · Bob Hu · Isaac Godfried · Ke Xiao · Heliodoro Tejeda Lemus · Jordan Harrod · ILSANG WOO · Vincent Chen · Joseph Cheng · Vikash Gupta · Chuck-Hou Yee · Ben Glocker · Hervé Lombaert · Maximilian Ilse · Aneta Lisowska · Andrew Doyle · Milad Makkie -
2017 : Poster session - Morning »
Yongchan Kwon · Young-geun Kim · Ender Konukoglu · Peter Li · John Guibas · Tejpal Virdi · Kuldeep Kumar · Morteza Mardani · Jelmer Wolterink · Enhao Gong · Natalia Antropova · Johannes Stelzer · Rene Bidart · Wei-Hung Weng · Martin Rajchl · Marc Górriz · Vineeta Singh · Christopher Sandino · Hiba Chougrad · Bob Hu · Isaac Godfried · Ke Xiao · Heliodoro Tejeda Lemus · Jordan Harrod · ILSANG WOO · Vincent Chen · Joseph Cheng · Vikash Gupta · Chuck-Hou Yee · Ben Glocker · Hervé Lombaert · Maximilian Ilse · Aneta Lisowska · Andrew Doyle · Milad Makkie -
2017 : Opening »
Ben Glocker · Ender Konukoglu · Hervé Lombaert · Kanwal Bhatia -
2017 Workshop: Medical Imaging meets NIPS »
Ben Glocker · Ender Konukoglu · Hervé Lombaert · Kanwal Bhatia -
2013 Poster: Scalable kernels for graphs with continuous attributes »
Aasa Feragen · Niklas Kasenburg · Jens Petersen · Marleen de Bruijne · Karsten Borgwardt