Workshop organizers make last-minute changes to their schedule. Download this document again to get the lastest changes, or use the NIPS mobile application.

Schedule Highlights

Dec. 7, 2018

Critiquing and Correcting Trends in Machine Learning Rainforth, Kusner, Bloem-Reddy, Paige, Caruana, Teh

NIPS 2018 Competition Track Day 1 Escalera, Herbrich

Imitation Learning and its Challenges in Robotics Mukadam, Choudhury, Srinivasa

The second Conversational AI workshop – today's practice and tomorrow's potential Geramifard, Williams, Boureau, Eskenazi, Gasic, Glass, Hakkani-Tur, Heck, Polymenakos, Young

2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2) Ravi, Chai, Jia, Aradhye, Jain

Continual Learning Pascaru, Teh, Pickett, Ring

Causal Learning Arjovsky, Heinze-Deml, Klimovskaia, Oquab, Bottou, Lopez-Paz

Modeling the Physical World: Learning, Perception, and Control Wu, Allen, Smith, Hamrick, Dupoux, Toussaint, Tenenbaum

Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy Veloso, Kallus, Shah, Kumar, Moulinier, Chen, Paisley

NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications Fan, Lin, Welling, Chen, Bailar

Smooth Games Optimization and Machine Learning Lacoste-Julien, Mitliagkas, Gidel, Syrgkanis, Tardos, Bottou, Nowozin

Workshop on Ethical, Social and Governance Issues in AI Bakalar, Bird, Caetano, Felten, Garcia, Kloumann, Lattimore, Mullainathan, Sculley

Modeling and decision-making in the spatiotemporal domain Senanayake, Jean, Ramos, Chowdhary

Machine Learning for Geophysical & Geochemical Signals Pyrak-Nolte, Rustad, Baraniuk

Workshop on Security in Machine Learning Papernot, Tramer, Chaudhuri, Fredrikson, Steinhardt

Visually grounded interaction and language Strub, de Vries, Wijmans, Datta, Perez, Malinowski, Lee, Anderson, Courville, MARY, Batra, Parikh, Pietquin, HORI, Marks, Cherian

Bayesian Deep Learning Gal, Hernández-Lobato, Louizos, Wilson, Ghahramani, Murphy, Welling

Deep Reinforcement Learning Abbeel, Silver, Singh, Pineau, Achiam, Houffo, Srinivas

All of Bayesian Nonparametrics (Especially the Useful Bits) Cai, Campbell, Hughes, Broderick, Foti, Williamson

MLSys: Workshop on Systems for ML and Open Source Software Lakshmiratan, Bird, Sen, Gonzalez, Crankshaw

Dec. 8, 2018

NIPS 2018 Workshop on Meta-Learning Grant, Hutter, Ravi, Vanschoren, Wang

NIPS 2018 Competition Track Day 2 Herbrich, Escalera

Wordplay: Reinforcement and Language Learning in Text-based Games Trischler, Lazaridou, Bisk, Tay, Kushman, Côté, Sordoni, Ricks, Zahavy, Daumé III

Learning by Instruction Srivastava, Labutov, Yang, Azaria, Mitchell

Integration of Deep Learning Theories Baraniuk, Anandkumar, Mallat, Patel, Heinzelman
Machine Learning for Systems Goldie, Mirhoseini, Raiman, Swersky, Hashemi

Relational Representation Learning Grover, Varma, Sala, Holtzen, Neville, Ermon, Ré

NIPS Workshop on Machine Learning for Intelligent Transportation Systems 2018 Li, Dragan, Niebles, Savarese

Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare Beam, Naumann, Ghassemi, McDermott, Fiterau, Chen, Beaulieu-Jones, Hughes, Shamout, Chivers, Kandola, Yahi, Finlayson, Jedynak, Schulum, Antropova, Fries, Dalca

Second Workshop on Machine Learning for Creativity and Design Elliott, Dieleman, Fiebrink, Engel, Roberts, White

Machine Learning for Molecules and Materials Hernández-Lobato, Müller, Paige, Kusner, Chmiela, Schütt

Medical Imaging meets NIPS Konukoglu, Glocker, Lombaert, de Bruijine

Reinforcement Learning under Partial Observability Pajarinen, Amato, Poupart, Hsu

Privacy Preserving Machine Learning Bellet, Gascon, Kilbertus, Ohrimenko, Raykova, Weller

AI for social good Luck, Sylvain, Cohen, Fansi Tchango, Goddard, Helouis, Bengio, Greydanus, Wild, Kucherenko, Farahi, Penn, McGregor, Crowley, Gupta, Chen, Côté

CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time Guyon, Viegas, Escalera, Abernethy

Infer to Control: Probabilistic Reinforcement Learning and Structured Control Kaelbling, Riedmiller, Toussaint, Mordatch, Fox, Haarnoja

Emergent Communication Workshop Foerster, Lazaridou, Lowe, Mordatch, Kiela, Cho

Interpretability and Robustness in Audio, Speech, and Language Ravanelli, Serdyuk, Variani, Ramabhadran

Machine Learning Open Source Software 2018: Sustainable communities Strathmann, Gal, Curtin, Lisitsyn, Honkela, Ong

Recently there have been calls to make machine learning more reproducible, less hand-tailored, fair, and generally more thoughtful about how research is conducted and put into practice. These are hallmarks of a mature scientific field and will be crucial for machine learning to have the wide-ranging, positive impact it is expected to have. Without careful consideration, we as a field risk inflating expectations beyond what is possible. To address this, this workshop aims to better understand and to improve all stages of the research process in machine learning.

A number of recent papers have carefully considered trends in machine learning as well as the needs of the field when used in real-world scenarios [1-18]. Each of these works introspectively analyzes what we often take for granted as a field. Further, many propose solutions for moving forward. The goal of this workshop is to bring together researchers from all subfields of machine learning to highlight open problems and widespread dubious practices in the field, and crucially, to propose solutions. We hope to highlight issues and propose solutions in areas such as:

- Common practices [1, 8]
- Implicit technical and empirical assumptions that go unquestioned [2, 3, 5, 7, 11, 12, 13, 17, 18]
- Shortfalls in publication and reviewing setups [15, 16]
- Disconnects between research focus and application requirements [9, 10, 14]
- Surprising observations that make us rethink our research priorities [4, 6]

The workshop program is a collection of invited talks, alongside contributed posters and talks. For some of these talks, we plan a unique open format of 10 minutes of talk + 10 minutes of follow up discussion. Additionally, a separate panel discussion will collect researchers with a diverse set of viewpoints on the current challenges and potential solutions. During the panel, we will also open the conversation to the audience. The discussion will further be open to an online Q&A which will be solicited prior to the workshop.

A key expected outcome of the workshop is a collection of important open problems at all levels of machine learning research, along with a record of various bad practices that we should no longer consider to be acceptable. Further, we hope that the workshop will make inroads in how to address these problems, highlighting promising new frontiers for making machine learning practical, robust, reproducible, and fair when applied to real-world problems.

Call for Papers:

Deadline: October 30rd, 2018, 11.59pm UTC
The one day NIPS 2018 Workshop: Critiquing and Correcting Trends in Machine Learning calls for papers that critically examine current common practices and/or trends in methodology, datasets, empirical standards, publication models, or any other aspect of machine learning research. Though we are happy to receive papers that bring attention to problems for which there is no clear immediate remedy, we particularly encourage papers which propose a solution or indicate a way forward. Papers should motivate their arguments by describing gaps in the field. Crucially, this is not a venue for settling scores or character attacks, but for moving machine learning forward as a scientific discipline.

To help guide submissions, we have split up the call for papers into the follows tracks. Please indicate the intended track when making your submission. Papers are welcome from all subfields of machine learning. If you have a paper which you feel falls within the remit of the workshop but does not clearly fit one of these tracks, please contact the organizers at: ml.critique.correct@gmail.com.

Bad Practices (1-4 pages)

Papers that highlight common bad practices or unjustified assumptions at any stage of the research process. These can either be technical shortfalls in a particular machine learning subfield, or more procedural bad practices of the ilk of those discussed in [17]. When possible, papers should also try to highlight work which does not fall foul of these bad practices, as examples of how they can be avoided.

Flawed Intuitions or Unjustified Assumptions (3-4 pages)

Papers that call into question commonly held intuitions or provide clear evidence either for or against assumptions that are regularly taken for granted without proper justification. For example, we would like to see papers which provide empirical assessments to test out metrics, verify intuitions, or compare popular current approaches with historic baselines that may have unfairly fallen out of favour (see e.g. [2]). Such submissions are encouraged regardless of whether these assessments ultimately result in positive or negative results. We would also like to see work which provides results which makes us rethink our intuitions or the assumptions we typically make.

Negative Results (3-4 pages)

Papers which show failure modes of existing algorithms or suggest new approaches which one might expect to perform well but which do not. The aim of the latter of these is to provide a venue for work which might otherwise go unpublished but which is still of interest to the community, for example by dissuading other researchers from similar ultimately unsuccessful approaches. Though it is inevitably preferable that papers are able to explain why the approach performs poorly, this is not essential if the paper is able to demonstrate why the negative result is of interest to the community in its own right.

Research Process (1-4 pages)

Papers which provide carefully thought through critiques, provide discussion on, or suggest new approaches to areas such as the conference model, the reviewing process, the role of industry in research, open sourcing of code and data, institutional biases and discrimination in the field, research ethics, reproducibility standards, and allocation of conference tickets.

Debates (1-2 pages)

Short proposition papers which discuss issues
either affecting all of machine learning or significantly sized subfields (e.g. reinforcement learning, Bayesian methods, etc). Selected papers will be used as the basis for instigating online forum debates before the workshop, leading up to live discussions on the day itself.

Open Problems (1-4 papers/short talks)

Papers that describe either (a) unresolved questions in existing fields that need to be addressed, (b) desirable operating characteristics for ML in particular application areas that have yet to be achieved, or (c) new frontiers of machine learning research that require rethinking current practices (e.g., error diagnosis for when many ML components are interoperating within a system, automating dataset collection/creation).

Submission Instructions

Papers should be submitted as pdfs using the NIPS LaTeX style file. Author names should be anonymized. Page limits do not include references. Appendices may be included after the references, but reviewers are not obliged to read them.

All accepted papers will be made available through the workshop website and presented as a poster. Selected papers will also be given contributed talks. We are able to add a moderate number of accepted paper authors to the pool of reserved tickets. In the event that the number of accepted papers exceeds our reserved ticket allocation, assignments to the reserved ticket pool will be allocated based on review scores. We further have a small number of complimentary workshop registrations that will be handed out to selected papers. If any authors are unable to attend the workshop due visa, ticketing, or funding issues, they will be allowed to provide a video presentation for their work that will be made available through the workshop website in lieu of a poster presentation.

Please submit papers here: [https://easychair.org/conferences/?conf=cract2018](https://easychair.org/conferences/?conf=cract2018)

Deadline: October 30rd, 2018, 11:59 UTC

References

[7] Urban, G., Geras, K. J., Kahou, S. E., Wang, O. A. S., Caruana, R., Mohamed, A., ... & Richardson, M. (2016). Do deep convolutional nets really need to be deep (or even convolutional)?

Schedule

08:30 AM Opening Remarks

08:45 AM Kim Hazelwood Hazelwood

09:15 AM Zachary Lipton Lipton

09:45 AM Contributed Talks

10:30 AM Poster Session 1

11:30 AM Suchi Saria Saria

12:00 PM Lunch

01:30 PM Sebastian Nowozin Nowozin

02:00 PM Finale Doshi-Velez Doshi-Velez

02:30 PM Charles Sutton Sutton

03:00 PM Coffee Break and Posters

03:30 PM Panel and Debates

04:45 PM Poster Session 2

NIPS 2018 Competition Track Day 1

Sergio Escalera, Ralf Herbrich

Fri Dec 07, 08:00 AM

NIPS 2018 Competitions, day 1: Regular data-driven NIPS competitions

Schedule

07:50 AM Opening and Best Demo Award Escalera, Herbrich announcement

08:00 AM Inclusive Images Competition

09:15 AM Adversarial Vision Challenge

10:30 AM Coffee break

11:00 AM The Conversational Intelligence Challenge 2 Weston (ConvAI2) : Setup, Opening Words
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:10</td>
<td>The Conversational Intelligence Challenge 2 (ConvAI2): Winners, Results &amp; Analysis</td>
<td>Dinan</td>
</tr>
<tr>
<td>11:20</td>
<td>The Conversational Intelligence Challenge 2 (ConvAI2): Winners talks &amp; spotlights</td>
<td>Wolf, peng, Saam, Elder, Kurbanov</td>
</tr>
<tr>
<td>12:05</td>
<td>The Conversational Intelligence Challenge 2 (ConvAI2): Conclusion, Discussion of Future Steps</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>Lunch break</td>
<td></td>
</tr>
<tr>
<td>01:30</td>
<td>AutoML for Lifelong Machine Learning</td>
<td></td>
</tr>
<tr>
<td>03:00</td>
<td>Coffee break</td>
<td></td>
</tr>
<tr>
<td>03:30</td>
<td>TrackML challenge - Introduction: tracking particles in LHC detector</td>
<td>Salzburger</td>
</tr>
<tr>
<td>03:45</td>
<td>TrackML Accuracy Competition winner talk</td>
<td>Wind</td>
</tr>
<tr>
<td>04:00</td>
<td>TrackML a LSTM attempt</td>
<td>Finnie, Finnie</td>
</tr>
<tr>
<td>04:15</td>
<td>TrackML when speed matter</td>
<td>Gorbunov</td>
</tr>
<tr>
<td>04:30</td>
<td>Conclusion and Outlook on the on-going Throughput phase</td>
<td>Rousseau</td>
</tr>
<tr>
<td>04:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>05:15</td>
<td>AI for prosthetics</td>
<td></td>
</tr>
</tbody>
</table>

Abstracts (4):

Abstract 2: Inclusive Images Competition in NIPS 2018 Competition Track Day 1, 08:00 AM

- Organizers introduction
- Competition winners approaches
- Lessons learned / other approaches
- Discussion and closing

Abstract 3: Adversarial Vision Challenge in NIPS 2018 Competition Track Day 1, 09:15 AM

- Introduction
- Results of the competition
- Talks by top participants

Abstract 10: AutoML for Lifelong Machine Learning in NIPS 2018 Competition Track Day 1, 01:30 PM

- Overview presentation + awards ceremony
- Short talks by the top 3 ranked participants
- Short talks by two outstanding contributions

Abstract 18: AI for prosthetics in NIPS 2018 Competition Track Day 1, 05:15 PM

- Overview of the Challenge
- Challenge logistics (Mohanty)
- Run top submissions on the final test environment
- Talks from top participants
- Awards ceremony
Imitation Learning and its Challenges in Robotics

Mustafa Mukadam, Sanjiban Choudhury, Siddhartha Srinivasa

Fri Dec 07, 08:00 AM

Many animals including humans have the ability to acquire skills, knowledge, and social cues from a very young age. This ability to imitate by learning from demonstrations has inspired research across many disciplines like anthropology, neuroscience, psychology, and artificial intelligence. In AI, imitation learning (IL) serves as an essential tool for learning skills that are difficult to program by hand. The applicability of IL to robotics in particular, is useful when learning by trial and error (reinforcement learning) can be hazardous in the real world. Despite the many recent breakthroughs in IL, in the context of robotics there are several challenges to be addressed if robots are to operate freely and interact with humans in the real world.

Some important challenges include: 1) achieving good generalization and sample efficiency when the user can only provide a limited number of demonstrations with little to no feedback; 2) learning safe behaviors in human environments that require the least user intervention in terms of safety overrides without being overly conservative; and 3) leveraging data from multiple sources, including non-human sources, since limitations in hardware interfaces can often lead to poor quality demonstrations.

In this workshop, we aim to bring together researchers and experts in robotics, imitation and reinforcement learning, deep learning, and human robot interaction to
- Formalize the representations and primary challenges in IL as they pertain to robotics
- Delineate the key strengths and limitations of existing approaches with respect to these challenges
- Establish common baselines, metrics, and benchmarks, and identify open questions

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:50 AM</td>
<td>Introduction</td>
<td>Mukadam, Choudhury, Srinivasa</td>
</tr>
<tr>
<td>09:00 AM</td>
<td>Peter Stone</td>
<td>Stone</td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Sonia Chernova</td>
<td>Chernova</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Industry Spotlight</td>
<td>George</td>
</tr>
<tr>
<td>10:15 AM</td>
<td>Contributed Spotlights</td>
<td>de Haan, Wang, Wang, Hayat, Sobh, Rana, Buhet, Rhinehart, Sharma, Bewley, Kelly, Blondé, Oguz</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee Break and Poster Session I</td>
<td>Dorsa Sadigh</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>TBD</td>
<td>Sadigh</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>Lunch Break</td>
<td>Byron Boots</td>
</tr>
<tr>
<td>12:00 PM</td>
<td></td>
<td>Boots</td>
</tr>
<tr>
<td>02:00 PM</td>
<td>Ingmar Posner</td>
<td>Ingmar Posner</td>
</tr>
<tr>
<td>02:30 PM</td>
<td>Coffee Break and Poster Session II</td>
<td>Yisong Yue</td>
</tr>
<tr>
<td>03:00 PM</td>
<td></td>
<td>Yisong Yue</td>
</tr>
</tbody>
</table>
The second Conversational AI workshop – today’s practice and tomorrow’s potential

Alborz Geramifard, Jason Williams, Y-Lan Boureau, Maxine Eskenazi, Milica Gasic, Jim Glass, Dilek Hakkani-Tur, Larry Heck, Lazaros C. Polymenakos, Steve Young

Fri Dec 07, 08:00 AM

In the span of only a few years, conversational systems have become commonplace. Every day, millions of people use natural-language interfaces such as Siri, Google Now, Cortana, Alexa and others via in-home devices, phones, or messaging channels such as Messenger, Slack, Skype, among others. At the same time, interest among the research community in conversational systems has blossomed: for supervised and reinforcement learning, conversational systems often serve as both a benchmark task and an inspiration for new ML methods at conferences which don't focus on speech and language per se, such as NIPS, ICML, IJCAI, and others. Research community challenge tasks are proliferating, including the seventh Dialog Systems Technology Challenge (DSTC7), the Amazon Alexa prize, and the Conversational Intelligence Challenge live competitions at NIPS (2017, 2018).

Following the overwhelming participation in our last year NIPS workshop (9 invited talks, 26 submissions, 3 orals papers, 13 accepted papers, 37 PC members, and couple of hundreds of participants), we are excited to continue promoting cross-pollination of ideas between academic research centers and industry. The goal of this workshop is to bring together researchers and practitioners in this area, to clarify impactful research problems, share findings from large-scale real-world deployments, and generate new ideas for future lines of research.

This workshop will include invited talks from academia and industry, contributed work, and open discussion. In these talks, senior technical leaders from many of the most popular conversational services will give insights into real usage and challenges at scale. An open call for papers will be issued, and we will prioritize forward-looking papers that propose interesting and impactful contributions. We will end the day with an open discussion, including a panel consisting of academic and industrial researchers.

2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2)

Sujith Ravi, Wei Chai, Yangqing Jia, Hrishikesh Aradhye, Prateek Jain

Fri Dec 07, 08:00 AM

The 2nd Workshop on Machine Learning on the Phone and other Consumer Devices (MLPCD 2) aims to continue the success of the 1st MLPCD workshop held at NIPS 2017 in Long Beach, CA.

Previously, the first MLPCD workshop edition, held at NIPS 2017 was successful, attracted over 200+ attendees and led to active research & panel discussions as well as follow-up contributions to the open-source community (e.g., release of new inference libraries, tools, models and standardized representations of deep learning models). We believe that interest in this space is only going to increase, and we hope that the workshop plays the
role of an influential catalyst to foster research and collaboration in this nascent community.

After the first workshop where we investigated initial directions and trends, the NIPS 2018 MLPCD workshop focuses on theory and practical applications of on-device machine learning, an area that is highly relevant and specializes in the intersection of multiple topics of interest to NIPS and broader machine learning community -- efficient training & inference for deep learning and other machine learning models; interdisciplinary mobile applications involving vision, language & speech understanding; and emerging topics like Internet of Things.

We plan to incorporate several new additions this year -- inspirational opening Keynote talk on "future of intelligent assistive & wearable experiences"; two panels including a lively closing panel debate discussing pros/cons of two key ML computing paradigms (Cloud vs. On-device); solicited research papers on new & recent hot topics (e.g., theoretical & algorithmic work on low-precision models, compression, sparsity, etc. for training and inference), related challenges, applications and recent trends; demo session showcasing ML in action for real-world apps.

Description & Topics:

Deep learning and machine learning, in general, has changed the computing paradigm. Products of today are built with machine intelligence as a central attribute, and consumers are beginning to expect near-human interaction with the appliances they use. However, much of the Deep Learning revolution has been limited to the cloud, enabled by popular toolkits such as Caffe, TensorFlow, and MxNet, and by specialized hardware such as TPUs. In comparison, mobile devices until recently were just not fast enough, there were limited developer tools, and there were limited use cases that required on-device machine learning. That has recently started to change, with the advances in real-time computer vision and spoken language understanding driving real innovation in intelligent mobile applications. Several mobile-optimized neural network libraries were recently announced (CoreML, Caffe2 for mobile, TensorFlow Lite), which aim to dramatically reduce the barrier to entry for mobile machine learning. Innovation and competition at the silicon layer has enabled new possibilities for hardware acceleration. To make things even better, mobile-optimized versions of several state-of-the-art benchmark models were recently open sourced. Widespread increase in availability of connected “smart” appliances for consumers and IoT platforms for industrial use cases means that there is an ever-expanding surface area for mobile intelligence and ambient devices in homes. All of these advances in combination imply that we are likely at the cusp of a rapid increase in research interest in on-device machine learning, and in particular, on-device neural computing.

Significant research challenges remain, however. Mobile devices are even more personal than “personal computers” were. Enabling machine learning while simultaneously preserving user trust requires ongoing advances in the research of differential privacy and federated learning techniques. On-device ML has to keep model size and power usage low while simultaneously optimizing for accuracy. There are a few exciting novel approaches recently developed in mobile optimization of neural networks. Lastly, the newly prevalent use of camera and voice as interaction models has fueled exciting research towards neural techniques for image and speech/language understanding. This is an area that is highly relevant to multiple topics of interest to NIPS -- e.g., core topics like machine learning & efficient inference and interdisciplinary applications involving vision,
language & speech understanding as well as emerging area (namely, Internet of Things).

With this emerging interest as well as the wealth of challenging research problems in mind, we are proposing the second NIPS 2018 workshop dedicated to on-device machine learning for mobile and ambient home consumer devices.

Areas/topics of interest include, but not limited to:

* Model compression for efficient inference with deep networks and other ML models
* Privacy preserving machine learning
* Low-precision training/inference & Hardware acceleration of neural computing on mobile devices
* Real-time mobile computer vision
* Language understanding and conversational assistants on mobile devices
* Speech recognition on mobile and smart home devices
* Machine intelligence for mobile gaming
* ML for mobile health other real-time prediction scenarios
* ML for on-device applications in the automotive industry (e.g., computer vision for self-driving cars)
* Software libraries (including open-source) optimized for on-device ML

Target Audience:

The next wave of ML applications will have significant processing on mobile and ambient devices. Some immediate examples of these are single-image classification, depth estimation, object recognition and segmentation running on-device for creative effects, or on-device recommender and ranking systems for privacy-preserving, low-latency experiences. This workshop will bring ML practitioners up to speed on the latest trends for on-device applications of ML, offer an overview of the latest HW and SW framework developments, and champion active research towards hard technical challenges emerging in this nascent area. The target audience for the workshop is both industrial and academic researchers and practitioners of on-device, native machine learning. The workshop will cover both “informational” and “aspirational” aspects of this emerging research area for delivering ground-breaking experiences on real-world products.

Given the relevance of the topic, target audience (mix of industry + academia & related parties) as well as the timing (confluence of research ideas + practical implementations both in industry as well as through publicly available toolkits ), we feel that NIPS 2018 would continue to be a great venue for this workshop.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Manik Varma Varma</td>
<td></td>
</tr>
<tr>
<td>09:00 AM</td>
<td>Prof. Kurt Keutzer Keutzer</td>
<td></td>
</tr>
<tr>
<td>09:50 AM</td>
<td>Prof. Thad Starner</td>
<td></td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee break (morning)</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Prof. Max Welling Welling</td>
<td></td>
</tr>
<tr>
<td>01:30 PM</td>
<td>Prof. Virginia Smith Smith</td>
<td></td>
</tr>
<tr>
<td>02:00 PM</td>
<td>Brendan McMahan McMahan</td>
<td></td>
</tr>
<tr>
<td>03:00 PM</td>
<td>Coffee break (afternoon)</td>
<td></td>
</tr>
<tr>
<td>03:30 PM</td>
<td>Jan Kautz Kautz</td>
<td></td>
</tr>
</tbody>
</table>
Continual Learning

Razvan Pascanu, Yee Teh, Marc Pickett, Mark Ring

Fri Dec 07, 08:00 AM

Continual learning (CL) is the ability of a model to learn continually from a stream of data, building on what was learnt previously, hence exhibiting positive transfer, as well as being able to remember previously seen tasks. CL is a fundamental step towards artificial intelligence, as it allows the agent to adapt to a continuously changing environment, a hallmark of natural intelligence. It also has implications for supervised or unsupervised learning. For example, when the dataset is not properly shuffled or there exists a drift in the input distribution, the model overfits the recently seen data, forgetting the rest -- phenomena referred to as catastrophic forgetting, which is part of CL and is something CL systems aim to address.

Continual learning is defined in practice through a series of desiderata. A non-complete lists includes:
* Online learning -- learning occurs at every moment, with no fixed tasks or data sets and no clear boundaries between tasks;
* Presence of transfer (forward/backward) -- the model should be able to transfer from previously seen data or tasks to new ones, as well as possibly new task should help improve performance on older ones;
* Resistance to catastrophic forgetting -- new learning does not destroy performance on previously seen data;
* Bounded system size -- the model capacity should be fixed, forcing the system use its capacity intelligently as well as gracefully forgetting information such to ensure maximising future reward;
* No direct access to previous experience -- while the model can remember a limited amount of experience, a continual learning algorithm should not have direct access to past tasks or be able to rewind the environment;

In the previous edition of the workshop the focus has been on defining a complete list of desiderata, of what a continual learning (CL) enabled system should be able to do. We believe that in this edition we should further constrain the discussion with a focus on how to evaluate CL and how it relates to other existing topics (e.g. life-long learning, transfer learning, meta-learning) and how ideas from these topics could be useful for continual learning.

Different aspects of continual learning are in opposition of each other (e.g. fixed model capacity and not-forgetting), which also raises the question of how to evaluate continual learning systems. One hand, what are the right trade-offs between these different opposing forces? How do we compare existing algorithms given these different dimensions along which we should evaluate them (e.g. forgetting, positive transfer)? What are the right metrics we should report? On the other hand, optimal or meaningful trade-offs will be tightly defined by the data or at least type of tasks we use to test the algorithms. One prevalent task used by many recent papers is PermutedMNIST. But as MNIST is not a reliable dataset for classification, so PermutedMNIST might be extremely misleading for continual learning. What would be the right benchmarks, datasets or tasks for fruitfully exploiting this topic?

Finally, we will also encourage presentation of both novel approaches to CL and implemented systems, which will help concretize the discussion of what CL is and how to evaluate CL systems.
The route from machine learning to artificial intelligence remains uncharted. Recent efforts describe some of the conceptual problems that lie along this route [4, 9, 12]. The goal of this workshop is to investigate how much progress is possible by framing these problems beyond learning correlations, that is, by uncovering and leveraging causal relations:

1. Machine learning algorithms solve statistical problems (e.g. maximum likelihood) as a proxy to solve tasks of interest (e.g. recognizing objects). Unfortunately, spurious correlations and biases are often easier to learn than the task itself [14], leading to unreliable or unfair predictions. This phenomenon can be framed as causal confounding.

2. Machines trained on large pools of i.i.d. data often crash confidently when deployed in different circumstances (e.g., adversarial examples, dataset biases [18]). In contrast, humans seek prediction rules robust across multiple conditions. Allowing machines to learn robust rules from multiple environments can be framed as searching for causal invariances [2, 11, 16, 17].

3. Humans benefit from discrete structures to reason. Such structures seem less useful to learning machines. For instance, neural machine translation systems outperform those that model language structure. However, the purpose of this structure might not be modeling common sentences, but to help us formulate new ones. Modeling new potential sentences rather than observed ones is a form of counterfactual reasoning [8, 9].

4. Intelligent agents do not only observe, but also shape the world with actions. Maintaining plausible causal models of the world allows to build intuitions, as well as to design intelligent experiments and interventions to test them [16, 17]. Is causal understanding necessary for efficient reinforcement learning?

5. Humans learn compositionally; after learning simple skills, we are able to recombine them quickly to solve new tasks. Such abilities have so far eluded our machine learning systems. Causal models are compositional, so they might offer a solution to this puzzle [4].

6. Finally, humans are able to digest large amounts of unsupervised signals into a causal model of the world. Humans can learn causal affordances, that is, imagining how to manipulate new objects to achieve goals, and the outcome of doing so. Humans rely on a simple blueprint for a complex world: models that contain the correct causal structures, but ignore irrelevant details [16, 17].

We cannot address these problems by simply performing inference on known causal graphs. We need to learn from data to discover plausible causal models, and to construct predictors that are robust to distributional shifts. Furthermore, much prior work has focused on estimating explicit causal structures from data, but these methods are often unscalable, rely on untestable assumptions like faithfulness or acyclicity, and are difficult to incorporate into high-dimensional, complex and nonlinear machine learning pipelines. Instead of considering the task of estimating causal graphs as their final goal, learning machines may use notions from causation indirectly
to ignore biases, generalize across distributions, leverage structure to reason, design efficient interventions, benefit from compositionality, and build causal models of the world in an unsupervised way.

Call for papers

Submit your anonymous, NIPS-formatted manuscript here[https://easychair.org/cfp/NIPSCL2018]. All accepted submissions will require a poster presentation. A selection of submissions will be awarded a 5-minute spotlight presentation. We welcome conceptual, thought-provoking material, as well as research agendas, open problems, new tasks, and datasets.

Submission deadline: 28 October 2018
Acceptance notifications: 9 November 2018

Schedule:
See https://sites.google.com/view/nips2018causallearning/home for the up-to-date schedule.

Speakers:
Judea Pearl
David Blei
Nicolai Meinshausen
Bernhard Schölkopf
Isabelle Guyon
Csaba Szepesvari
Pietro Perona

References

Despite recent progress, AI is still far from achieving common-sense scene understanding and reasoning. A core component of this common sense is a useful representation of the physical world and its dynamics that can be used to predict and plan based on how objects interact. This capability is universal in adults, and is found to a certain extent even in infants. Yet despite increasing interest in the phenomenon in recent years, there are currently no models that exhibit the robustness and flexibility of human physical reasoning.

There have been many ways of conceptualizing models of physics, each with their complementary strengths and weaknesses. For instance, traditional physical simulation engines have typically used symbolic or analytic systems with “built-in” knowledge of physics, while recent connectionist methods have demonstrated the capability to learn approximate, differentiable system dynamics. While more precise, symbolic models of physics might be useful for long-term prediction and physical inference; approximate, differentiable models might be more practical for inverse dynamics and system identification. The design of a physical dynamics model fundamentally affects the ways in which that model can, and should, be used.

This workshop will bring together researchers in machine learning, computer vision, robotics, computational neuroscience, and cognitive science to discuss artificial systems that capture or model the physical world. It will also explore the cognitive foundations of physical representations, their interaction with perception, and their applications in planning and control. There will be invited talks from world leaders in the fields, presentations and poster sessions based on contributed papers, and a panel discussion.

Topics of discussion will include:
- Building and learning physical models (deep networks, structured probabilistic generative models, physics engines)
- How to combine model-based and model-free approaches to physical prediction
- How to use physics models in higher-level tasks such as navigation, video prediction, robotics, etc.
- How perception and action interact with physical representations
- How cognitive science and computational neuroscience may inform the design of artificial systems for physical prediction
- Methodology for comparing models of infant learning with artificial systems
- Development of new datasets or platforms for physics and visual common sense
Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy

Manuela Veloso, Nathan Kallus, Sameena Shah, Senthil Kumar, Isabelle Moulinier, Jiahao Chen, John Paisley

Fri Dec 07, 08:00 AM

The adoption of artificial intelligence in the financial service industry, particularly the adoption of machine learning, presents challenges and opportunities. Challenges include algorithmic fairness, explainability, privacy, and requirements of a very high degree of accuracy. For example, there are ethical and regulatory needs to prove that models used for activities such as credit decisioning and lending are fair and unbiased, or that machine reliance doesn’t cause humans to miss critical pieces of data. For some use cases, the operating standards require nothing short of perfect accuracy.

Privacy issues around collection and use of consumer and proprietary data require high levels of scrutiny. Many machine learning models are deemed unusable if they are not supported by appropriate levels of explainability. Some challenges like entity resolution are exacerbated because of scale, highly nuanced data points and missing information. On top of these fundamental requirements, the financial industry is ripe with adversaries who purport fraud and other types of risks.

The aim of this workshop is to bring together researchers and practitioners to discuss challenges for AI in financial services, and the opportunities such challenges represent to the community. The workshop will consist of a series of sessions, including invited talks, panel discussions and short paper presentations, which will showcase ongoing research and novel algorithms.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Opening Remarks</td>
<td>Veloso, Moulinier</td>
</tr>
<tr>
<td>08:50 AM</td>
<td>Invited Talk 1: Fairness and Causality with Missing Data</td>
<td>Udell</td>
</tr>
<tr>
<td>09:10 AM</td>
<td>Invited Talk 2: Augmented Intelligence for a Global Credit Rating Agency</td>
<td>Shah</td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Panel: Explainability, Fairness and Human Aspects in Financial Services</td>
<td>Udell, Chen, Mekel-Bobrov, Veloso, Kearns, Kleinberg, Freeman</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee Break and Socialization</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Invited Talk 3: Fairness in Allocation Problems</td>
<td>Kearns</td>
</tr>
<tr>
<td>11:20 AM</td>
<td>Paper Oral Presentations</td>
<td></td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>01:30 PM</td>
<td>Invited Talk 4: When Algorithms Trade: Modeling AI in Financial Markets</td>
<td>Wellman</td>
</tr>
<tr>
<td>01:50 PM</td>
<td>Invited Talk 5: ML-Based Evidence that High Frequency Trading Has Made the Market More Efficient</td>
<td>Balch</td>
</tr>
</tbody>
</table>
**Panel: How to democratize the application of AI in finance: Open data, technology and collaboration**

Chandarana, Sisk, Wellman, Balch, Shah, McBurnett

---

**02:10 PM**

**Coffee Break**

---

**03:00 PM**

**Invited Talk 6: Is it possible to have interpretable models for AI in Finance?**

Rudin

---

**03:50 PM**

**Paper Presentations**

---

**04:30 PM**

**Posters and Open Discussions**

---

**05:10 PM**

**Parallel Roundtable Discussions followed by a Retrospective**

---

**05:40 PM**

**Closing Remarks**

---

**NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications**

Lixin Fan, Zhouchen Lin, Max Welling, Yurong Chen, Werner Bailer

Fri Dec 07, 08:00 AM

This workshop aims to bring together researchers, educators, practitioners who are interested in techniques as well as applications of making compact and efficient neural network representations. One main theme of the workshop discussion is to build up consensus in this rapidly developed field, and in particular, to establish close connection between researchers in Machine Learning community and engineers in industry. We believe the workshop is beneficial to both academic researchers as well as industrial practitioners.

News and announcements:

---

Accepted papers & authors:

1. Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters, Marton Havasi, Robert Peharz, José Miguel Hernández-Lobato

2. Neural Network Compression using Transform Coding and Clustering, Thorsten Laude, Jörn Ostermann


4. Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition, Yu Pan, Jing Xu, Maolin Wang, Fei Wang, Kun Bai, Zenglin Xu

5. Efficient Inference on Deep Neural Networks by Dynamic Representations and Decision Gates, Mohammad Saeed Shafiee, Mohammad Javad Shafiee, Alexander Wong

6. Iteratively Training Look-Up Tables for Network Quantization, Fabien Cardinaux, Stefan Uhlich, Kazuki Yoshiyama, Javier Alonso García, Stephen Tiedemann, Thomas Kemp, Akira Nakamura

7. Hybrid Pruning: Thinner Sparse Networks for Fast Inference on Edge Devices, Xiaofan Xu, Mi Sun Park, Cormac Brick
8. Compression of Acoustic Event Detection Models with Low-rank Matrix Factorization and Quantization Training,
Bowen Shi, Ming Sun, Chieh-Chi Kao, Viktor Rozgic, Spyros Matsoukas, Chao Wang

9. On Learning Wire-Length Efficient Neural Networks,
Christopher Blake, Luyu Wang, Giuseppe Castiglione, Christopher Srinavasa, Marcus Brubaker

10. FLOPs as a Direct Optimization Objective for Learning Sparse Neural Networks,
Raphael Tang, Ashutosh Adhikari, Jimmy Lin

11. Three Dimensional Convolutional Neural Network Pruning with Regularization-Based Method,
Yuxin Zhang, Huan Wang, Yang Luo, Roland Hu

12. Differentiable Training for Hardware Efficient LightNNs,
Ruizhou Ding, Zeye Liu, Ting-Wu Chin, Diana Marculescu, R.D. (Shawn) Blanton

13. Structured Pruning for Efficient ConvNets via Incremental Regularization,
Huan Wang, Qiming Zhang, Yuehai Wang, Haoji Hu

14. Block-wise Intermediate Representation Training for Model Compression,
Animesh Koratana*, Daniel Kang*, Peter Bailis, Matei Zaharia

15. Targeted Dropout,
Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, Geoffrey E. Hinton

16. Adaptive Mixture of Low-Rank Factorizations for Compact Neural Modeling,
Ting Chen, Ji Lin, Tian Lin, Song Han, Chong Wang, Denny Zhou

17. Differentiable Fine-grained Quantization for Deep Neural Network Compression,
Hsin-Pai Cheng, Yuanjun Huang, Xuyang Guo, Yifei Huang, Feng Yan, Hai Li, Yiran Chen

18. Transformer to CNN: Label-scarce distillation for efficient text classification,
Yew Ken Chia, Sam Witteveen, Martin Andrews

19. EnergyNet: Energy-Efficient Dynamic Inference,
Yue Wang, Tan Nguyen, Yang Zhao, Zhangyang Wang, Yingyan Lin, Richard Baraniuk

20. Recurrent Convolutions: A Model Compression Point of View,
Zhendong Zhang, Cheolkon Jung

21. Rethinking the Value of Network Pruning,
Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, Trevor Darrell

22. Linear Backprop in non-linear networks,
Mehrdad Yazdani

23. Bayesian Sparsification of Gated Recurrent Neural Networks,
Ekaterina Lobacheva, Nadezhda Chirkova, Dmitry Vetrov

24. Demystifying Neural Network Filter Pruning,
Zhuwei Qin, Fuxun Yu, Chenchen Liu, Xiang Chen

25. Learning Compact Networks via Adaptive Network Regularization,
Sivaramakrishnan Sankarapandian, Anil Kag, Rachel Manzelli, Brian Kulis

26. Pruning at a Glance: A Structured Class-Blind Pruning Technique for Model Compression
Abdullah Salama, Oleksiy Ostapenko, Moin Nabi, Tassilo Klein
27. Succinct Source Coding of Deep Neural Networks
Sourya Basu, Lav R. Varshney

28. Fast On-the-fly Retraining-free Sparsification of Convolutional Neural Networks
Amir H. Ashouri, Tarek Abdelrahman

29. PocketFlow: An Automated Framework for Compressing and Accelerating Deep Neural Networks
Jiaxiang Wu, Yao Zhang, Haoli Bai, Huasong Zhong, Jinlong Hou, Wei Liu, Junzhou Huang

30. Universal Deep Neural Network Compression
Yoojin Choi, Mostafa El-Khamy, Jungwon Lee

31. Compact and Computationally Efficient Representations of Deep Neural Networks
Simon Wiedemann, Klaus-Robert Mueller, Wojciech Samek

32. Dynamic parameter reallocation improves trainability of deep convolutional networks
Hesham Mostafa, Xin Wang

33. Compact Neural Network Solutions to Laplace's Equation in a Nanofluidic Device
Martin Magill, Faisal Z. Qureshi, Hendrick W. de Haan

34. Distilling Critical Paths in Convolutional Neural Networks
Fuxun Yu, Zhuwei Qin, Xiang Chen

"Rethinking the Value of Network Pruning",
Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, Trevor Darrell

Acknowledgement to reviewers

The workshop organizers gratefully acknowledge the assistance of the following people, who reviewed submissions and actively discussed with authors:

Zhuang Liu, Ting-Wu Chin, Fuxun Yu, Huan Wang, Mehrdad Yazdani, Qigong Sun, Tim Genewein, Abdullah Salama, Anbang Yao, Chen Xu, Hao Li, Jiaxiang Wu, Zhisheng Zhong, Haoji Hu, Hesham Mostafa, Seunghyeon Kim, Xin Wang, Yiwen Guo, Yu Pan, Fereshteh Lagzi, Martin Magill, Wei-Cheng Chang, Yue Wang, Caglar Aytekin, Hannes Fassold, Martin Winter, Yunhe Wang, Faisal Qureshi, Filip Korzeniowski, jianguo Li, Jiashi Feng, Mingjie Sun, Shiqi Wang, Tinghuai Wang, Xiangyu Zhang, Yibo Yang, Ziqian Chen, Francesco Cricri, Jan Schlüter, Jing Xu, Lingyu Duan, Maoin Wang, Naiyan Wang, Stephen Tyree, Tianshui Chen, Vasileios Mezaris, Christopher Blake, Chris Srinivasasri, Giuseppe Castiglione, Amir Khoshamam, Kevin Luk, Luyu Wang, Jian Cheng, Pavlo Molchanov, Yihui He, Sam Witteveen, Peng Wang,

with special thanks to Ting-Wu Chin who contributed 7 reviewer comments.

We invite you to submit original work in, but not limited to, following areas:

Neural network compression techniques:
. Binarization, quantization, pruning, thresholding and coding of neural networks
. Efficient computation and acceleration of deep convolutional neural networks
. Deep neural network computation in low power

A best paper award will be presented to the contribution selected by reviewers, who will also take into account active discussions on OpenReview. One FREE NIPS ticket will be awarded to the best paper presenter.

The best paper award is given to the authors of
consumption applications (e.g., mobile or IoT devices)
  . Differentiable sparsification and quantization of deep neural networks
  . Benchmarking of deep neural network compression techniques

Neural network representation and exchange:
  . Exchange formats for (trained) neural networks
  . Efficient deployment strategies for neural networks
  . Industrial standardization of deep neural network representations
  . Performance evaluation methods of compressed networks in application context (e.g., multimedia encoding and processing)

Video & media compression methods using DNNs such as those developed in MPEG group:
  . To improve video coding standard development by using deep neural networks
  . To increase practical applicability of network compression methods

An extended abstract (3 pages long using NIPS style, see [https://nips.cc/Conferences/2018/PaperInformation/StyleFiles](https://nips.cc/Conferences/2018/PaperInformation/StyleFiles)) in PDF format should be submitted for evaluation of the originality and quality of the work. The evaluation is double-blind and the abstract must be anonymous. References may extend beyond the 3 page limit, and parallel submissions to a journal or conferences (e.g. AAAI or ICLR) are permitted.

Submissions will be accepted as contributed talks (oral) or poster presentations. Extended abstract should be submitted through OpenReview (https://openreview.net/group?id=NIPS.cc/2018/Workshop/CDNNRIA) by 20 Oct 2018. All accepted abstracts will be posted on the workshop website and archived.

Selection policy: all submitted abstracts will be evaluated based on their novelty, soundness and impacts. At the workshop we encourage DISCUSSION about NEW IDEAS, each submitter is thus expected to actively respond on OpenReview webpage and answer any questions about his/her ideas. The willingness to respond in OpenReview Q/A discussions will be an important factor for the selection of accepted oral or poster presentations.

Important dates:
  . Extended abstract submission deadline: 20 Oct 2018,
  . Acceptance notification: 29 Oct. 2018,
  . Camera ready submission: 12 November 2018,
  . Workshop: 7 December 2018

Submission:
Please submit your extended abstract through OpenReview system (https://openreview.net/group?id=NIPS.cc/2018/Workshop/CDNNRIA). For prospective authors: please send author information to workshop chairs (lixin.fan@nokia.com), so that you submission can be assigned to reviewers without conflict of interests.

  . Reviewers comments will be released by Oct. 24th, then authors have to reply by Oct. 27th, which leaving us two days for decision-making.
    . It is highly recommended for authors submit abstracts early, in case you need more time to address reviewers' comments.

NIPS Complimentary workshop registration
We will help authors of accepted submissions to get access to a reserve pool of NIPS tickets. So please register to the workshop early.

Workshop schedule on December 7th, 2018:

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 AM</td>
<td>Opening and Introduction</td>
</tr>
<tr>
<td>09:05 AM</td>
<td>TBD 1</td>
</tr>
</tbody>
</table>
### Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30</td>
<td>Bandwidth efficient deep learning by model compression</td>
<td>Han</td>
</tr>
<tr>
<td>09:55</td>
<td>Neural network compression in the wild: why aiming for high compression factors is not enough</td>
<td>Genewein</td>
</tr>
<tr>
<td>10:20</td>
<td>TBD 2</td>
<td></td>
</tr>
<tr>
<td>10:45</td>
<td>Coffee break (morning)</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Network compression via differentiable pruning and quantization</td>
<td>Welling</td>
</tr>
<tr>
<td>11:25</td>
<td>Deep neural networks for multimedia processing, coding and standardization</td>
<td>Liu</td>
</tr>
<tr>
<td>11:50</td>
<td>TBD 3</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>Lunch break (on your own)</td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td>Efficient Computation of Deep Convolutional Neural Networks: A</td>
<td>Cheng</td>
</tr>
<tr>
<td>02:25</td>
<td>Deep neural network compression and acceleration</td>
<td>Yao</td>
</tr>
<tr>
<td>02:50</td>
<td>Poster spotlight session.</td>
<td>Liu, Salama, Chang, Yazdani, Gomez, Tang, YU, Zhang, Zhang, Lin, Chirkova, Tiedemann, Bai, Sankarapandian, Havasi, Turner, Cheng, Wang, Xu, Ding, Hu, Shafiee, Blake, Kao, Kang, Chia</td>
</tr>
<tr>
<td>03:20</td>
<td>Coffee break (afternoon)</td>
<td></td>
</tr>
<tr>
<td>03:30</td>
<td>Poster presentations TBD</td>
<td></td>
</tr>
<tr>
<td>04:30</td>
<td>Panel discussion</td>
<td>Welling, Genewein, Park</td>
</tr>
<tr>
<td>05:30</td>
<td>Challenges and lessons learned in DNN portability in production</td>
<td>Lee</td>
</tr>
<tr>
<td>05:55</td>
<td>Closing</td>
<td></td>
</tr>
</tbody>
</table>

### Abstracts (7):

Abstract 3: **Bandwidth efficient deep learning by model compression in NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications**, Han 09:30 AM

In the post-ImageNet era, computer vision and machine learning researchers are solving more complicated AI problems using larger datasets driving the demand for more computation. However, we are in the post-Moore’s Law world where the amount of computation per unit cost and power is no longer increasing at its historic rate. This mismatch between supply and demand for computation highlights the need for co-designing efficient algorithms and hardware. In this talk, I will
talk about bandwidth efficient deep learning by model compression, together with efficient hardware architecture support, saving memory bandwidth, networking bandwidth, and engineer bandwidth.

Abstract 4: **Neural network compression in the wild: why aiming for high compression factors is not enough in NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications**, Genewein 09:55 AM

Abstract: the widespread use of state-of-the-art deep neural network models in the mobile, automotive and embedded domains is often hindered by the steep computational resources that are required for running such models. However, the recent scientific literature proposes a plethora of ways to alleviate the problem, either on the level of efficient network architectures, efficiency-optimized hardware or via network compression methods. Unfortunately, the usefulness of a network compression method strongly depends on the other aspects (network architecture and target hardware) as well as the task itself (classification, regression, detection, etc.), but very few publications consider this interplay. This talk highlights some of the issues that arise from the strong interplay between network architecture, target hardware, compression algorithm and target task. Additionally some shortcomings in the current literature on network compression methods are pointed-out, such as incomparability of results (different base-line networks, different training-/data-augmentation schemes, etc.), lack of results on tasks other than classification, or use of very different (and perhaps not very informative) quantitative performance indicators such as naive compression rate, operations-per-second, size of stored weight matrices, etc. The talk concludes by proposing some guidelines and best-practices for increasing practical applicability of network compression methods and a call for standardizing network compression benchmarks.

Abstract 7: **Network compression via differentiable pruning and quantization in NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications**, Welling 11:00 AM

Abstract: neural network compression has become an important research area due to its great impact on deployment of large models on resource constrained devices. In this talk, we will introduce two novel techniques that allow for differentiable sparsification and quantization of deep neural networks; both of these are achieved via appropriate smoothing of the overall objective. As a result, we can directly train architectures to be highly compressed and hardware-friendly via off-the-self stochastic gradient descent optimizers.


Deep neural networks have proven to be an effective approach for many applications such as in computer vision, data mining and so on. Recent advances show that they may also be helpful for video, image and rich media processing and compression. This talk will introduce some work being carried in Tencent Media Lab which utilize deep neural networks to help improving audio/visual experiences, and some recent advances and on-going activities of using neural networks to help video compression in ITU-T and ISO/IEC video coding standard development and in general. Opportunities and challenges will be discussed from the perspective of industry applications.

Abstract 11: **Efficient Computation of Deep Convolutional Neural Networks: A Quantization Perspective in NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications**, Cheng 02:00 PM
Deep neural networks have evolved remarkably over the past few years and they are currently the fundamental tools of many intelligent systems. At the same time, the computational complexity and resource consumption of these networks also continue to increase. This will pose a significant challenge to the deployment of such networks, especially in real-time applications or resource-limited devices. It is becoming a critical issue how to efficiently compute those networks, such as acceleration, compression. In this talk, we will first provide a brief introduction to network acceleration and compression, and then emphasize the efficient computation by quantization approach. Finally, we will introduce and discuss a few possible future directions.

Abstract 12: Deep neural network compression and acceleration in NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications, Yao 02:25 PM

In the past several years, Deep Neural Networks (DNNs) have demonstrated record-breaking accuracy on a variety of artificial intelligence tasks. However, the intensive storage and computational costs of DNN models make it difficult to deploy them on the mobile and embedded systems for real-time applications. In this technical talk, Dr. Yao will introduce their recent works on deep neural network compression and acceleration, showing how they achieve impressive compression performance without noticeable loss of model prediction accuracy, from the perspective of pruning and quantization.

Abstract 17: Challenges and lessons learned in DNN portability in production in NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications, Lee 05:30 PM

Deploying state-of-the-art deep neural networks into high-performance production system comes with many challenges. There is a plethora of deep learning frameworks with different operator designs and model format. As a deployment platform developer, having a portable model format to parse, instead of developing parsers for every single framework seems very attractive.

As a pioneer in the deep learning inference platform, NVIDIA TensorRT introduced UFF as a proposed solution last year, and now there are more exchange format available such as ONNX and NNEF.

In this talk, we will share the lessons learned from the TensorRT use cases in various production environment working with a portable format, with consideration of optimizations such as pruning, quantization, and auto-tuning on different target accelerators. We will also discuss some of the open challenges.

---

**Smooth Games Optimization and Machine Learning**

*Simon Lacoste-Julien, Ioannis Mitliagkas, Gauthier Gidel, Vasilis Syrgkanis, Eva Tardos, Leon Bottou, Sebastian Nowozin*

Fri Dec 07, 08:00 AM

## Overview

Advances in generative modeling and adversarial learning gave rise to a recent surge of interest in smooth two-players games, specifically in the context of learning generative adversarial networks (GANs). Solving these games raise intrinsically different challenges than the minimization tasks the machine learning community is used to. The goal of this workshop is to bring together the several communities interested in such smooth games, in order to present what is known on the topic and identify current open questions, such as how to handle the non-convexity appearing in GANs.
## Background and objectives

A number of problems and applications in machine learning are formulated as games. A special class of games, smooth games, have come into the spotlight recently with the advent of GANs. In a two-players smooth game, each player attempts to minimize their differentiable cost function which depends also on the action of the other player. The dynamics of such games are distinct from the better understood dynamics of optimization problems. For example, the Jacobian of gradient descent on a smooth two-player game, can be non-symmetric and have complex eigenvalues. Recent work by ML researchers has identified these dynamics as a key challenge for efficiently solving similar problems.

A major hurdle for relevant research in the ML community is the lack of interaction with the mathematical programming and game theory communities where similar problems have been tackled in the past, yielding useful tools. While ML researchers are quite familiar with the convex optimization toolbox from mathematical programming, they are less familiar with the tools for solving games. For example, the extragradient algorithm to solve variational inequalities has been known in the mathematical programming literature for decades, however the ML community has until recently mainly appealed to gradient descent to optimize adversarial objectives.

The aim of this workshop is to provide a platform for both theoretical and applied researchers from the ML, mathematical programming and game theory community to discuss the status of our understanding on the interplay between smooth games, their applications in ML, as well existing tools and methods for dealing with them. We also encourage, and will devote time during the workshop, on work that identifies and discusses open, forward-looking problems of interest to the NIPS community.

### Examples of topics of interest to the workshop are as follow:

* Other examples of smooth games in machine learning (e.g. actor-critic models in RL).
* Standard or novel algorithms to solve smooth games.
* Empirical test of algorithms on GAN applications.
* Existence and unicity results of equilibria in smooth games.
* Can approximate equilibria have better properties than the exact ones? [Arora 2017, Lipton and Young 1994].
* Variational inequality algorithms [Harker and Pang 1990, Gidel et al. 2018].
* Related topics from mathematical programming (e.g. bilevel optimization) [Pfau and Vinyals 2016].

### Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Opening remarks</td>
<td>Lacoste-Julien, Gidel</td>
</tr>
<tr>
<td>08:50 AM</td>
<td>Improving Generative Adversarial Networks using Game Theory and Statistics</td>
<td>Daskalakis</td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Poster spotlight</td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Poster session</td>
<td></td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Morning coffee break</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Smooth Games in Machine Learning Beyond GANs</td>
<td>He</td>
</tr>
</tbody>
</table>
Generative Adversarial Networks (aka GANs) are a recently proposed approach for learning samplers of high-dimensional distributions with intricate structure, such as distributions over natural images, given samples from these distributions. They are trained by setting up a two-player zero-sum game between two neural networks, which learn statistics of a target distribution by adapting their strategies in the game using gradient descent. Despite their intriguing performance in practice, GANs pose great challenges to both Optimization and Statistics. Their training suffers from oscillations, and they are difficult to scale to high-dimensional settings. We study how game-theoretic and statistical techniques can be brought to bare on these important challenges. We use Game Theory towards improving GAN training, and Statistics towards scaling up the dimensionality of the generated distributions.

Abstract 6: Smooth Games in Machine Learning Beyond GANs in Smooth Games Optimization and Machine Learning, He 11:00 AM

This talk will discuss a wide spectrum of recent advances in machine learning using smooth games, beyond the phenomenal GANs. Such showcases include reinforcement learning, robust and adversarial machine learning, approximate Bayesian computation, maximum likelihood estimation in exponential family, and etc. We show that all of these classical machine learning tasks can be reduced to solving (non) convex-concave min-max optimization problems. Hence, it is of paramount importance to developing a good theoretical understanding and principled algorithms for min-max optimization. We will review some of the theory and algorithms for smooth games and variational inequalities in the convex regime and shed some light on their counterparts in the non-convex regime.

Abstract 14: An interpretation of GANs via online learning and game theory in Smooth Games Optimization and Machine Learning, Grnarova 03:50 PM
Generative Adversarial Networks (GANs) have become one of the most powerful paradigms in learning real-world distributions. Despite this success, their minimax nature makes them fundamentally different to more classical generative models thus raising novel challenges; most notably in terms of training and evaluation. Indeed, finding a saddle-point is in general a harder task than converging to an extremum. We view the problem of training GANs as finding a mixed strategy in a zero-sum game. Building upon ideas from online learning and game theory, we propose (i) a novel training method with provable convergence to an equilibrium for semi-shallow GAN architectures, i.e. architectures where the discriminator is a one layer network and the generator is an arbitrary network and (ii) a natural metric for detecting non-convergence, namely the duality gap.

Workshop on Ethical, Social and Governance Issues in AI

Chloe Bakalar, Sarah Bird, Tiberio Caetano, Edward W Felten, Dario Garcia, Isabel Kloumann, Finnian Lattimore, Sendhil Mullainathan, D. Sculley

Fri Dec 07, 08:00 AM

Abstract

Ethics is the philosophy of human conduct: It addresses the question “how should we act?” Throughout most of history the repertoire of actions available to us was limited and their consequences constrained in scope and impact through dispersed power structures and slow trade. Today, in our globalised and networked world, a decision can affect billions of people instantaneously and have tremendously complex repercussions. Machine learning algorithms are replacing humans in making many of the decisions that affect our everyday lives. How can we decide how machine learning algorithms and their designers should act? What is the ethics of today and what will it be in the future?

In this one day workshop we will explore the interaction of AI, society, and ethics through three general themes.

Advancing and Connecting Theory: How do different fairness metrics relate to one another? What are the trade-offs between them? How do fairness, accountability, transparency, interpretability and causality relate to ethical decision making? What principles can we use to guide us in selecting fairness metrics within a given context? Can we connect these principles back to ethics in philosophy? Are these principles still relevant today?

Tools and Applications: Real-world examples of how ethical considerations are affecting the design of ML systems and pipelines. Applications of algorithmic fairness, transparency or interpretability to produce better outcomes. Tools that aid identifying and or alleviating issues such as bias, discrimination, filter bubbles, feedback loops etc. and enable actionable exploration of the resulting trade-offs.

Regulation: With the GDPR coming into force in May 2018 it is the perfect time to examine how regulation can help (or hinder) our efforts to deploy AI for the benefit of society. How are companies and organisations responding to the GDPR? What aspects are working and what are the challenges? How can regulatory or legal frameworks be designed to continue to encourage innovation, so society as a whole can benefit from AI, whilst still providing protection against its harms.

This workshop is designed to be focused on some of the larger ethical issues related to AI and can be seen as a complement to the FATML proposal, which is focused more on fairness, transparency
and accountability. We would be happy to link or cluster the workshops together, but we (us and the FATML organizers) think that there is more than 2 day worth of material that the community needs to discuss in the area of AI and ethics, so it would be great to have both workshops if possible.

**Modeling and decision-making in the spatiotemporal domain**

*Ransalu Senanayake, Neal Jean, Fabio Ramos, Girish Chowdhary*

**Fri Dec 07, 08:00 AM**

Abstract Understanding the evolution of a process over space and time is fundamental to a variety of disciplines. To name a few, such phenomena that exhibit dynamics in both space and time include propagation of diseases, variations in air pollution, dynamics in fluid flows, and patterns in neural activity. In addition to these fields in which modeling the nonlinear evolution of a process is the focus, there is also an emerging interest in decision-making and controlling of autonomous agents in the spatiotemporal domain. That is, in addition to learning what actions to take, when and where to take actions is crucial for an agent to efficiently and safely operate in dynamic environments. Although various modeling techniques and conventions are used in different application domains, the fundamental principles remain unchanged. Automatically capturing the dependencies between spatial and temporal components, making accurate predictions into the future, quantifying the uncertainty associated with predictions, real-time performance, and working in both big data and data scarce regimes are some of the key aspects that deserve our attention.

Establishing connections between Machine Learning and Statistics, this workshop aims at; (1) raising open questions on challenges of spatiotemporal modeling and decision-making, (2) establishing connections among diverse application domains of spatiotemporal modeling, and (3) encouraging conversation between theoreticians and practitioners to develop robust predictive models.

**Keywords**

Theory: deep learning/convolutional LSTM, kernel methods, chaos theory, reinforcement learning for dynamic environments, dynamic policy learning, biostatistics, epidemiology, geostatistics, climatology, neuroscience, etc.

Applications:

Natural phenomena: disease propagation and outbreaks, environmental monitoring, climate modeling, etc.

Social and economics: predictive policing, population mapping, poverty mapping, food resources, agriculture, etc.

Engineering/robotics: active data collection, traffic modeling, motion prediction, fluid dynamics, spatiotemporal prediction for safe autonomous driving, etc.

Paper submission deadline (second round): **October 19**, 2018 11:59 pm AOE [submit]

Web:
https://sites.google.com/site/nips18spatiotemporal/

**Schedule**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Introduction Wikle</td>
</tr>
</tbody>
</table>
Ideally a detailed interpretation of the geometric contents of these data sets would provide valuable prior information for the solution of corresponding inverse problems. This unsatisfactory state of affairs is indicative of a lack of effective and robust algorithms for the computational parsing and interpretation of seismograms (and other geoscience data sets). Indeed, the limited frequency content, strong nonlinearity, temporally scattered nature of these signals make their analysis with standard signal processing techniques difficult and insufficient.

Once important seismic phases are identified, the next challenge is determining the link between a remotely-measured geophysical response and a characteristic property (or properties) of the fractures and fracture system. While a strong laboratory-based foundation has established a link between the mechanical properties of simple fracture systems (i.e. single fractures, parallel sets of fractures) and elastic wave scattering, bridging to the field scale faces additional complexity and a range of length scales that cannot be achieved from laboratory insight alone. This fundamental knowledge gap at the critical scale for long-term monitoring and risk assessment can only be narrowed or closed with the development of appropriate mathematical and numerical representations at each scale and across scales using multiphysics models that traverse spatial and temporal scales.

Topic
Major breakthroughs in bridging the knowledge gaps in geophysical sensing are anticipated as more researchers turn to machine learning (ML) techniques; however, owing to the inherent complexity of machine learning methods, they are prone to misapplication, may produce uninterpretable models, and are often insufficiently documented. This combination of attributes hinders both reliable assessment of model validity and
consistent interpretation of model outputs. By providing documented datasets and challenging teams to apply fully documented workflows for ML approaches, we expect to accelerate progress in the application of data science to longstanding research issues in geophysics.

The goals of this workshop are to:
(1) bring together experts from different fields of ML and geophysics to explore the use of ML techniques related to the identification of the physics contained in geophysical and chemical signals, as well as from images of geologic materials (minerals, fracture patterns, etc.); and
(2) announce a set of geophysics machine learning challenges to the community that address earthquake detection and the physics of rupture and the timing of earthquakes.

Target Audience
We aim to elicit new connections among these diverse fields, identify novel tools and models that can be transferred from one to the other, and explore novel ML applications that will benefit from ML algorithms paradigm. We believe that a successful workshop will lead to new research directions in a variety of areas and will also inspire the development of novel theories and tools.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Introduction</td>
<td>Pyrak-Nolte, Rustad, Baraniuk</td>
</tr>
<tr>
<td>08:40</td>
<td>Paul Johnson</td>
<td>Johnson</td>
</tr>
<tr>
<td>09:05</td>
<td>Greg Beroza, Mostafa Mousavi,</td>
<td>Beroza</td>
</tr>
<tr>
<td></td>
<td>and Weiqiang Zhu.</td>
<td></td>
</tr>
<tr>
<td>09:30</td>
<td>Maarten de Hoop</td>
<td>de Hoop</td>
</tr>
<tr>
<td>09:55</td>
<td>Karianne Jodine Bergen</td>
<td>Bergen</td>
</tr>
<tr>
<td>10:20</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:40</td>
<td>Ping Lu</td>
<td>Lu</td>
</tr>
<tr>
<td>10:40</td>
<td>Mauricio Araya-Polo</td>
<td>Araya</td>
</tr>
<tr>
<td>10:45</td>
<td>Jorge Guevara</td>
<td>Guevara Diaz</td>
</tr>
<tr>
<td>10:45</td>
<td>Ben Yuxing</td>
<td>Ben</td>
</tr>
<tr>
<td>10:50</td>
<td>Timothy Draelos</td>
<td>Draelos</td>
</tr>
<tr>
<td>10:50</td>
<td>Zachary Ross</td>
<td>Ross</td>
</tr>
<tr>
<td>10:55</td>
<td>Ben Moseley</td>
<td>Moseley</td>
</tr>
<tr>
<td>10:55</td>
<td>Men-Andrin Meier</td>
<td>Meier</td>
</tr>
<tr>
<td>11:00</td>
<td>Xiaojin Tan</td>
<td>Tan</td>
</tr>
<tr>
<td>11:00</td>
<td>Mathieu Chambefort</td>
<td>Chambefort</td>
</tr>
<tr>
<td>11:05</td>
<td>Zheng Zhou</td>
<td>Lin</td>
</tr>
<tr>
<td>11:05</td>
<td>B Ravi Kiran</td>
<td>BANGALORE RAVI</td>
</tr>
<tr>
<td>11:10</td>
<td>Cheng Zhan</td>
<td>Zhan</td>
</tr>
<tr>
<td>11:15</td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td>Bertrand Rouet-Leduc</td>
<td>Rouet-Leduc</td>
</tr>
<tr>
<td>02:20</td>
<td>Joan Bruna</td>
<td>Bruna</td>
</tr>
</tbody>
</table>
Abstracts (24):

Abstract 1: Introduction in Machine Learning for Geophysical & Geochemical Signals, Pyrak-Nolte, Rustad, Baraniuk 08:30 AM

Introductory comments by organizers

Abstract 2: Paul Johnson in Machine Learning for Geophysical & Geochemical Signals, Johnson 08:40 AM

Probing Earthquake Fault Slip using Machine Learning

Earthquakes take place when two juxtaposed fault blocks are stressed sufficiently to overcome the frictional force holding them in place and they abruptly slip relative to each other. Earthquake faults exhibit a continuum of behaviors ranging from stick slip associated with strong shaking, to slow slip which is primarily aseismic, to very slow slip that is both aseismic and can take place over hours to months. We are characterizing faulting physics by analyzing with machine learning continuous acoustic data streams in the laboratory and continuous seismic data streams in Earth. We use as labels characteristics of the measured fault slip behavior in the laboratory such as the fault friction, shear displacement and fault thickness. In Earth, we use surface displacement as determined by Global Positioning Systems (GPS). Other data such as INSAR can be used as well. We find that the laboratory acoustic data and the Earth seismic data are a type of Rosetta Stone revealing fault characteristics at all times and fault displacements. This is a surprising observation because previously we believed most or much of the signal was noise. Here we describe an overview of recent work in this area and also describe recent efforts on parallel problems such as volcanoes and geysers.

Abstract 3: Greg Beroza, Mostafa Mousavi, and Weiqiang Zhu in Machine Learning for Geophysical & Geochemical Signals, Beroza 09:05 AM

Deep Learning of Earthquake Signals

Gregory C. Beroza, S. Mostafa Mousavi, and Weiqiang Zhu

Diverse algorithms have been developed for efficient earthquake signal detection and processing. These algorithms are becoming increasingly important as seismologists strive to extract as much insight as possible from exponentially increasing volumes of continuous seismic data. Waveform similarity search, based on the premise that adjacent earthquakes generate similar waveforms, is now widely and effectively used to detect earthquakes too small to appear routinely in earthquake catalogs. Machine learning has the potential to generalize this similarity search from strict waveform similarity to waveforms that have similar characteristics. Convolutional and recurrent networks have each been shown to be promising tools for earthquake signal detection, and we have developed a deep convolutional-recurrent network to combine the advantages of each. This architecture is well-suited to learn both the spectral and temporal characteristics of earthquake signals.
We have applied it to different, but inter-related tasks in earthquake analysis, including: earthquake detection, classification of continuous seismic data into P-waves, S-waves, and noise, and the problem of de-noising of earthquake signals. In our presentation we demonstrate the performance of deep learning applied to seismic signals for each of these tasks.

Abstract 5: Karianne Jodine Bergen in Machine Learning for Geophysical & Geochemical Signals, Bergen 09:55 AM

Towards data-driven earthquake detection:
Extracting weak seismic signals with locality-sensitive hashing

Extracting weak earthquake signals from continuous waveform data recorded by sensors in a seismic network is a fundamental and challenging task in seismology. In this talk, I will present Fingerprint and Similarity Thresholding (FAST; Yoon et al, 2015), a computationally efficient method for large-scale earthquake detection. FAST adapts technology used for rapid audio identification to the problem of extracting weak earthquake signals in continuous seismic data. FAST uses locality-sensitive hashing, a data mining technique for efficiently identifying similar items in large data sets, to detect similar waveforms (candidate earthquakes) in continuous seismic data. A distinguishing feature of our approach is that FAST is an unsupervised detector; FAST can discover new sources without any template waveforms or waveform characteristics available as training data – a common situation for seismic data sets. In our recent work, we have extended FAST to enable earthquake detection using data from multiple sensors spaced tens or hundreds of kilometers apart (Bergen and Beroza, 2018), and optimized the FAST software for detection at scale (Rong et al., 2018). FAST can now detect earthquakes with previously unknown sources in 10-year, multi-sensor seismic data sets without training data – a capability that was not previously available for seismic data analysis.

Abstract 6: Coffee Break in Machine Learning for Geophysical & Geochemical Signals, 10:20 AM

Poster Spotlight

*Mauricio Araya-Polo, Stuart Farris and Manuel Florez, Combining Unsupervised and Supervised Deep Learning approaches for Seismic Tomography
Signals from inner earth, seismic waveforms, are heavily manipulated before human interpreters have a chance of figuring the subsurface structures. That manipulation adds modeling biases and it is limited by methodological shortcomings. Alternatively, using waveforms directly is becoming possible thanks to current Deep Learning (DL) advances such as (Araya-Polo et al., 2017 and 2018; Lin et al., 2017). Further extending that work, we present a DL approach that takes realistic raw seismic waveforms as inputs and produces subsurface velocity models as output. When insufficient data is used for training, DL algorithms tend to either over-fit or fail completely. Gathering large amounts of labeled and standardized seismic data sets is not straight forward. We address this shortage of quality data by building a Generative Adversarial Network (GAN) to augment our original training data set, which then is used by the DL seismic tomography as input.

*Yuxing Ben, Chris James, Dingzhou Can, Drilling State Classification with Machine Learning
The sensors on drilling rigs and production sites are leading oil and gas companies to mine so-called big data. Leveraging historical time series data and real-time drilling data can help drilling engineers improve rig and well delivery efficiencies; however, it can also help geoscientists understand the geophysical properties of the reservoir. In this case study, we describe how to use machine learning to classify drilling states. We investigated several
machine learning methods and architectures including Random Forest tree models, Convolutional Neural Networks, and Recurrent Neural Networks which were then tested against 15 million rows of real, labeled drilling time-series data. We found that machine learning models were superior to rule based models. For wells drilled in two different onshore basins, the accuracies of our in-house rule based models were 70% and 90% respectively, while the accuracies of machine learning models were over 99%. The best identified machine learning model has been deployed in a drilling analytics platform and used to automatically detect the drilling state in realtime for use by Drilling Engineers to evaluate and analyze well performance.


The huge amount of heterogeneous data provided by the petroleum industry brings opportunities and challenges for applying machine learning methodologies. For instance, petrophysical data recorded in well logs, completions datasets and well production data also constitute good examples of data for training machine learning models with the aim of automating procedures and giving data-driven solutions to problems arisen in the petroleum industry. In this work, we present a machine learning methodology for oil exploration that 1) opens the possibility of integration of heterogeneous data such as completion, engineering, and well production data, as well as, petrophysical feature estimation from petrophysical data from horizontal and vertical wells; 2) it enables the discovery of new locations with high potential for production by using predictive modeling for sweet spotting identification; 3) it facilitates the analysis of the effect, role, and impact of some engineering decisions on production by means of interpretable Machine learning modeling, allowing the model validation; 4) it allows the incorporation of prior/expert knowledge by using Shape Constraint Additive Models and; 5) it enables the construction of hypothetical "what-if" scenarios for production prediction. Among the results, it is important to highlight that 1) performance improves by including prior knowledge via SCAMs, for example, we have a percentage change of 24% between the best RMSE result from black-box ML models vs a model that incorporates prior knowledge. 2) we were able to construct hypothetical what-if scenarios based on actual petrophysical data and hypothetical completion and engineering values, 3) we were able to assess the validity of ML models through effect analysis via conditonal plots.

*Ping Lu, Hunter Danque, Jianxiong Chen, Seth Brazell, and Mostafa Karimi, Enhanced Seismic Imaging with Predictive Neural Networks for Geophysics

Full-waveform inversion (FWI) has become a popular method to estimate elastic earth properties from seismic data, and it has great utility in seismic velocity model building and seismic reflectivity imaging in areas of complex salt. FWI is a non-linear data-fitting procedure that matches the predicted to observed waveform data given an initial guess of the subsurface parameters. The velocity model parameters are updated to reduce the misfit between the observed and predicted data until the misfit is sufficiently small. Sharp velocity boundaries such as between salt and sediment are often updated manually for each iteration based on the seismic reflectivity images. Here, we propose a predictive neural network architecture as a potential alternative to the complex FWI workflow. An unsupervised learning model of predicting of future frames in a video sequence is explored to simulate direct inversion procedures for seismic data. Such neural network architectures are comprised of two main components: an encoder based on convolutional neural networks (CNNs), and a
recurrent neural networks (RNNs) for iteratively predicting geophysical velocity models. Both the proposed networks are able to robustly train individual layers and make a layer-specific prediction, which is compared with a target to produce an error term. It is then propagated to the subsequent network layers. With a few iterative training steps, the networks are capable of learning internal representations decoded from latent parameters of seismic wave propagation which controls how FWI velocity modelling converges. These representations learned from one dataset could be transferred to predict the future velocity model of a brand-new area where the shape of salt body is not well imaged or known. Altogether, experimental results generated from a real Gulf of Mexico seismic data suggest that the prediction represents a powerful framework for unsupervised learning, which provides an alternative approach to the FWI procedure to generate a high resolution velocity model including an accurate salt model and ultimately a sharp subsalt image.

*Zachary Ross, PhaseLink: A Deep Learning Approach to Seismic Phase Association
We present PhaseLink, a deep learning approach to seismic phase association. Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. Our PhaseLink approach has many desirable properties. First, it is trained entirely on synthetic simulated data (i.e., "sim-to-real"), and is thus easily portable to any tectonic regime. Second, it is straightforward to tune PhaseLink by simply adding examples of problematic cases to the training dataset -- whereas conventional approaches require laborious adjusting of ad hoc hyperparameters. Third, we empirically demonstrate state-of-the-art performance in a wide range of settings. For instance, PhaseLink can precisely associate P- and S-picks to events that are separated by ~12 seconds in origin time. We expect PhaseLink to substantially improve many aspects of seismic analysis, including the resolution of seismicity catalogs, real-time seismic monitoring, and streamlined processing of large seismic datasets.

*Timothy Draelos, Stephen Heck, Jennifer Galasso, and Ronald Brogan, Seismic Phase Identification with a Merged Deep Neural Network
Seismic signals are composed of the seismic waves (phases) that reach a sensor, similar to the way speech signals are composed of phonemes that reach a listener’s ear. We leverage ideas from speech recognition for the classification of seismic phases at a seismic sensor. Seismic Phase ID is challenging due to the varying paths and distances an event takes to reach a sensor, but there is consistent structure and ordering of the different phases arriving at the sensor. Together with scalar value measurements of seismic signal detections (horizontal slowness, amplitude, Signal-to-Noise Ratio (SNR), and the time since the previous signal detection), we use the seismogram and its spectrogram of detection waveforms as inputs to a merged deep neural network (DNN) with convolutional (CNN) and recurrent (LSTM) layers to learn the frequency structure over time of different phases. The binary classification performance of First-P phases versus non-First-P (95.6% class average accuracy) suggests a potentially significant impact on the reduction of false and missed events in seismic signal processing pipelines. Other applications include discrimination between noise and non-noise detections for induced seismicity networks and for early warning of large hazards.

*Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer, Fast Approximate Simulation of Seismic Waves with Deep Learning
The simulation of seismic waves is a core task in
many geophysical applications, yet it is computationally expensive. As an alternative approach, we simulate acoustic waves in horizontally layered media using a deep neural network. In contrast to traditional finite-difference (FD) modelling, our network is able to directly approximate the recorded seismic response at multiple receiver locations in a single inference step, without needing to iteratively model the seismic wavefield through time. This results in an order of magnitude reduction in simulation time, from the order of 1 s for FD modelling to the order of 0.1 s using our approach. Such a speed improvement could lead to real-time seismic simulation applications and benefit seismic inversion algorithms based on forward modelling, such as full waveform inversion. Our network design is inspired by the WaveNet network originally used for speech synthesis. We train our network using 50,000 synthetic examples of seismic waves propagating through different horizontally layered velocity models. We are also able to alter our WaveNet architecture to carry out seismic inversion directly on the dataset, which offers a fast inversion algorithm.


In Earthquake Early Warning (EEW), every sufficiently impulsive signal is potentially the first evidence for an unfolding large earthquake. More often than not, however, impulsive signals are mere nuisance signals. One of the most fundamental - and difficult - tasks in EEW is to rapidly and reliably discriminate between real local earthquake signals, and any kind of other signal. Current EEW systems struggle to avoid discrimination errors, and suffer from false and missed alerts. In this study we show how machine learning classifiers can strongly improve real-time signal/noise discrimination. We develop and compare a series of non-linear classifiers with variable architecture depths, including random forests, fully connected, convolutional (CNN, Figure 1) and recurrent neural networks, and a generative adversarial network (GAN). We train all classifiers on the same waveform data set that includes 374k 3-component local earthquake records with magnitudes M3.0-9.1, and 946k impulsive noise signals. We find that the deep architectures significantly outperform the more simple ones. Using 3s long waveform snippets, the CNN and the GAN classifiers both reach 99.5% precision and 99.3% recall on an independent validation data set. Our results suggest that machine learning classifiers can strongly improve the reliability and speed of EEW alerts.

* Mathieu Chambefort, Nicolas Salaun, Emillie Chautru, Stephan Clemencon, Guillaume Poulain, Signal and Noise Detection using Recurrent Autoencoders on Seismic Marine Data

In order to meet the industrial constraints in the Big Data era, i.e. processing more and more seismic data (more than 106 shot points per marine seismic survey from [Belz and Dolymnyj, 2018]) in a more timely, reliable and efficient manner (i.e. with a better signal enhancement, [Martin et al., 2015]), we develop a deep learning approach based on recurrent LSTM ([Wong and Luo, 2018]) to the processing of seismic time series, so as to separate the signal from the noise based on the encoded information. This contribution provides empirical evidence that the representation provided by the internal layers of the autoencoder deployed encodes well the original information. More precisely, focus is here on the linear noise possibly blurring marine seismic data, which is mainly due to the tug and motor of the boat but can also be caused by bad weather or other elements, rig and other boats in
the area ([Elboth et al., 2009]). The data under study are composed of massive synthetic shot points.
The goal pursued is to design an autoencoder capable of detecting the possible occurrence of linear noise in the data. The encoded information is next classified and the results obtained are compared with those of a traditional technique, that essentially consists in applying directly a K-NN algorithm on the envelope of the analytical signal, as if all the dataset comes from the same area.

*Xiaojin Tan and Eldad Haber, Semantic Segmentation for Geophysical Data

Segmentation of geophysical data is the process of dividing a geophysical image into multiple geological units. This process is typically done manually by experts, it is time consuming and inefficient. In recent years, machine learning techniques such as Convolutional Neural Networks (CNNs) have been used for semantic segmentation. Semantic segmentation is the process that associates each pixel in a natural image with a labeled class. When attempting to use similar technology to automatically segment geophysical data there are a number of challenges to consider, in particular, data inconsistency, scarcity and complexity. To overcome these challenges, we develop a new process that we call geophysical semantic segmentation (GSS). This process addresses the pre-processing of geophysical data in order to enable learning, the enrichment of the data set (data augmentation) by using a geo-statistical technique, referred to as Multiple-Point Simulations (MPS) and finally, the training of such a data set based on a new neural network architecture called inverse Convolution Neural Networks (iCNN) that is specifically developed to identify patterns. As demonstrated by the results on a field magnetic data set, this approach shows its competitiveness with human segmentation and indicates promising results.

*B Ravi Kiran and Stefan Milz, Aerial LiDAR reconstruction using Conditional GANS

Recently, aerial LiDAR data opened lots of new opportunities for many research disciplines like macroscopic geophysical analysis or archaeological investigations. However, LiDAR measurements are expensive and the data is not widely distributed or accessible. We propose a novel method for image to image translation performing HD-LiDAR reconstruction using RGB input images based on conditional GANs. The conditional mapping function of the generator $G : [c; z] \rightarrow y$ is transformed to $G : [x; z] \rightarrow y$, whereas $y$ represents the reconstructed LiDAR map and $c$ represents the condition. $c$ is replaced by the aligned aerial camera image $x$. $z$ represents the noise. Our approach is able to reconstruct LiDAR data as elevation maps based on small scaled training data, which includes RGB and LiDAR sample pairs based on 256 × 256 image matrices. The model offers the opportunity to complete geophysical LiDAR databases, where measurements are missing. The method is validated on the ISPRS dataset with an overall rRMSE of 14.53%.

Zheng Zhou, Youzuo Lin, Zhongping Zhang, Zan Wang, Robert Dilmore and George Guthrie, CO2 and Brine Leakage Detection Using Multi-Physics-Informed Convolutional Neural Networks

In carbon capture and sequestration, it is crucial to build effective monitoring techniques to detect both brine and CO2 leakage from legacy wells into underground sources of drinking water. The CO2 and brine leakage detection methods rely on geophysical observations from different physical domains. Most of the current detection methods are
built on physical models, and the leakage mass of CO2 and brine are detected separately. However, those physics-driven methods can be computationally demanding and yields low detection accuracy. In this paper, we developed a novel end-to-end data-driven detection method, called multi-physics-informed convolutional neural network (Multi-physics CNN), which directly learns a mapping relationship between physical measurements and leakage mass. Our Multi-physical CNN takes simulated reflection seismic and pressure data as inputs, and captures different patterns in leakage process. In particular, we capture two types of multi-physical features from seismic and pressure data, respectively. With those features, we can further detect the CO2 and brine leakage mass, simultaneously. We evaluate our novel method for CO2 and brine leakage mass detection task on simulated multi-physical datasets generated using Kimberlina 1.2 model. Our results show that our Multi-physics CNN yields promising results in detecting both leakage mass of CO2 and brine.

Abstract 7: Ping Lu in Machine Learning for Geophysical & Geochemical Signals, Lu 10:40 AM

Enhanced Seismic Imaging with Predictive Neural Networks for Geophysics
Ping Lu, Yanyan Zhang, Jianxiong Chen, Seth Brazell, Mostafa Karimi
Anadarko Petroleum Corporation, Houston, and Texas A&M University--College Station

We propose a predictive neural network architecture that can be utilized to update reference velocity models as inputs to full waveform inversion (FWI). Deep learning models are explored to augment velocity model building workflows during 3D seismic volume reprocessing in salt-prone environments. Specifically, a neural network architecture, with 3D convolutional, de-convolutional layers, and 3D max-pooling, is designed to take standard amplitude 3D seismic volumes as an input. Enhanced data augmentations through generative adversarial networks and a weighted loss function enable the network to train with few sparsely annotated slices. Batch normalization is also applied for faster convergence. Moreover, a 3D probability cube for salt bodies is generated through ensembles of predictions from multiple models in order to reduce variance. Velocity models inferred from the proposed networks provide opportunities for FWI forward models to converge faster with an initial condition closer to the true model. In each iteration step, the probability cubes of salt bodies inferred from the proposed networks can be used as a regularization term in FWI forward modelling, which may result in an improved velocity model estimation while the output of seismic migration can be utilized as an input of the 3D neural network for subsequent iterations.

Abstract 8: Mauricio Araya-Polo in Machine Learning for Geophysical & Geochemical Signals, Araya 10:40 AM

Mauricio Araya-Polo, Stuart Farris and Manuel Florez
Standford University and Shell International Exploration & Production Inc.

Combining Unsupervised and Supervised Deep Learning approaches for Seismic Tomography

Signals from inner earth, seismic waveforms, are heavily manipulated before human interpreters have a chance of figuring the subsurface structures. That manipulation adds modeling biases and it is limited by methodological shortcomings. Alternatively, using waveforms directly is becoming possible thanks to current Deep Learning (DL) advances such as (Araya-Polo et al., 2017 and 2018; Lin et al., 2017). Further extending that work, we present a DL approach that takes realistic raw seismic waveforms as inputs and produces subsurface velocity models as output. When insufficient data is
used for training, DL algorithms tend to either over-fit or fail completely. Gathering large amounts of labeled and standardized seismic data sets is not straight forward. We address this shortage of quality data by building a Generative Adversarial Network (GAN) to augment our original training data set, which then is used by the DL seismic tomography as input.

Abstract 9: Jorge Guevara in Machine Learning for Geophysical & Geochemical Signals, Guevara Diaz 10:45 AM

Jorge Guevara, Blanca Zadrozny, Alvaro Buoro, Ligang Lu, John Tolle, Jan Limbeck, Mingqi Wu, Defletf Hohl
IBM Research and Shell Inc.

An Interpretable Machine Learning Methodology for Well Data Integration and Sweet Spotting Identification. The huge amount of heterogeneous data provided by the petroleum industry brings opportunities and challenges for applying machine learning methodologies. For instance, petrophysical data recorded in well logs, completions datasets and well production data also constitute good examples of data for training machine learning models with the aim of automating procedures and giving data-driven solutions to problems arisen in the petroleum industry. In this work, we present a machine learning methodology for oil exploration that 1) opens the possibility of integration of heterogeneous data such as completion, engineering, and well production data, as well as, petrophysical feature estimation from petrophysical data from horizontal and vertical wells; 2) it enables the discovery of new locations with high potential for production by using predictive modeling for sweet spotting identification; 3) it facilitates the analysis of the effect, role, and impact of some engineering decisions on production by means of interpretable Machine learning modeling, allowing the model validation; 4) it allows the incorporation of prior/expert knowledge by using Shape Constraint Additive Models and; 5) it enables the construction of hypothetical "what-if" scenarios for production prediction. Among the results, it is important to highlight that 1) performance improves by including prior knowledge via SCAMs, for example, we have a percentage change of 24% between the best RMSE result from black-box ML models vs a model that incorporates prior knowledge. 2) we were able to construct hypothetical what-if scenarios based on actual petrophysical data and hypothetical completion and engineering values, 3) we were able to assess the validity of ML models through effect analysis via conditonal plots.

Abstract 10: Ben Yuxing in Machine Learning for Geophysical & Geochemical Signals, Ben 10:45 AM

Drilling State Classification with Machine Learning
Yuxing Ben, Chris James, Dingzhou Cao
Advanced Analytics and Emerging Technology, Anadarko Petroleum Corporation

The sensors on drilling rigs and production sites are leading oil and gas companies to mine so-called big data. Leveraging historical time series data and real-time drilling data can help drilling engineers improve rig and well delivery efficiencies; however, it can also help geoscientists understand the geophysical properties of the reservoir. In this case study, we describe how to use machine learning to classify drilling states. We investigated several machine learning methods and architectures including Random Forest tree models, Convolutional Neural Networks, and Recurrent Neural Networks which were then tested against 15 million rows of real, labeled drilling time-series data. We found that machine learning models were superior to rule based models. For wells drilled in two different onshore basins, the accuracies of our in-house rule based models were 70% and 90% respectively, while the accuracies of machine learning models were over 99%. The best identified machine learning model has been deployed in a
drilling analytics platform and used to automatically detect the drilling state in realtime for use by Drilling Engineers to evaluate and analyze well performance.

Abstract 11: Timothy Draelos in Machine Learning for Geophysical & Geochemical Signals, *Draelos* 10:50 AM

Seismic Phase Identification with a Merged Deep Neural Network

Timothy J. Draelos, Stephen Heck, Jennifer Galasso, Ronald Brogan
Sandia National Laboratories & ENSCO, Inc.

Seismic signals are composed of the seismic waves (phases) that reach a sensor, similar to the way speech signals are composed of phonemes that reach a listener’s ear. We leverage ideas from speech recognition for the classification of seismic phases at a seismic sensor. Seismic Phase ID is challenging due to the varying paths and distances an event takes to reach a sensor, but there is consistent structure and ordering of the different phases arriving at the sensor. Together with scalar value measurements of seismic signal detections (horizontal slowness, amplitude, Signal-to-Noise Ratio (SNR), and the time since the previous signal detection), we use the seismogram and its spectrogram of detection waveforms as inputs to a merged deep neural network (DNN) with convolutional (CNN) and recurrent (LSTM) layers to learn the frequency structure over time of different phases. The binary classification performance of First-P phases versus non-First-P (95.6% class average accuracy) suggests a potentially significant impact on the reduction of false and missed events in seismic signal processing pipelines. Other applications include discrimination between noise and non-noise detections for induced seismicity networks and for early warning of large hazards.


PhaseLink: A Deep Learning Approach to Seismic Phase Association
Zachary Ross
California Institute of Technology

We present PhaseLink, a deep learning approach to seismic phase association. Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. Our PhaseLink approach has many desirable properties. First, it is trained entirely on synthetic simulated data (i.e., "sim-to-real"), and is thus easily portable to any tectonic regime. Second, it is straightforward to tune PhaseLink by simply adding examples of problematic cases to the training dataset -- whereas conventional approaches require laborious adjusting of ad hoc hyperparameters. Third, we empirically demonstrate state-of-the-art performance in a wide range of settings. For instance, PhaseLink can precisely associate P- and S-picks to events that are separated by ~12 seconds in origin time. We expect PhaseLink to substantially improve many aspects of seismic analysis, including the resolution of seismicity catalogs, real-time seismic monitoring, and streamlined processing of large seismic


Fast approximate simulation of seismic waves with deep learning
Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer
Centre for Doctoral Training in Autonomous
Intelligent Machines and Systems, University of Oxford, UK & Department of Earth Sciences, University of Oxford, UK

The simulation of seismic waves is a core task in many geophysical applications, yet it is computationally expensive. As an alternative approach, we simulate acoustic waves in horizontally layered media using a deep neural network. In contrast to traditional finite-difference (FD) modelling, our network is able to directly approximate the recorded seismic response at multiple receiver locations in a single inference step, without needing to iteratively model the seismic wavefield through time. This results in an order of magnitude reduction in simulation time, from the order of 1 s for FD modelling to the order of 0.1 s using our approach. Such a speed improvement could lead to real-time seismic simulation applications and benefit seismic inversion algorithms based on forward modelling, such as full waveform inversion. Our network design is inspired by the WaveNet network originally used for speech synthesis. We train our network using 50,000 synthetic examples of seismic waves propagating through different horizontally layered velocity models. We are also able to alter our WaveNet architecture to carry out seismic inversion directly on the dataset, which offers a fast inversion algorithm.

Abstract 14: Men-Andrin Meier in Machine Learning for Geophysical & Geochemical Signals, Meier 10:55 AM

Reliable Real-Time Signal/Noise Discrimination with Deep and Shallow Machine Learning Classifiers
Men-Andrin Meier, Zachary Ross, Anshul Ramachandran, Ashwin Balakrishna, Suraj Nair, Peter Kundzicz, Zefeng Li, Egill Hauksson, Jennifer Andrews
California Institute of Technology

In Earthquake Early Warning (EEW), every sufficiently impulsive signal is potentially the first evidence for an unfolding large earthquake. More often than not, however, impulsive signals are mere nuisance signals. One of the most fundamental - and difficult - tasks in EEW is to rapidly and reliably discriminate between real local earthquake signals, and any kind of other signal. Current EEW systems struggle to avoid discrimination errors, and suffer from false and missed alerts. In this study we show how machine learning classifiers can strongly improve real-time signal/noise discrimination. We develop and compare a series of non-linear classifiers with variable architecture depths, including random forests, fully connected, convolutional (CNN, Figure 1) and recurrent neural networks, and a generative adversarial network (GAN). We train all classifiers on the same waveform data set that includes 374k 3-component local earthquake records with magnitudes M3.0-9.1, and 946k impulsive noise signals. We find that the deep architectures significantly outperform the more simple ones. Using 3s long waveform snippets, the CNN and the GAN classifiers both reach 99.5% precision and 99.3% recall on an independent validation data set. Our results suggest that machine learning classifiers can strongly improve the reliability and speed of EEW alerts. Figure

Abstract 15: Xiaojin Tan in Machine Learning for Geophysical & Geochemical Signals, Tan 11:00 AM

Semantic Segmentation for Geophysical Data
Xiaojin Tan and Eldad Haber
The University of British Columbia, Vancouver, BC, Canada

Segmentation of geophysical data is the process of dividing a geophysical image into multiple geological units. This process is typically done manually by experts, it is time consuming and inefficient. In recent years, machine learning techniques such as Convolutional Neural Networks
(CNNs) have been used for semantic segmentation. Semantic segmentation is the process that associates each pixel in a natural image with a labeled class. When attempting to use similar technology to automatically segment geophysical data there are a number of challenges to consider, in particular, data inconsistency, scarcity and complexity. To overcome these challenges, we develop a new process that we call geophysical semantic segmentation (GSS). This process addresses the pre-processing of geophysical data in order to enable learning, the enrichment of the data set (data augmentation) by using a geo-statistical technique, referred to as Multiple-Point Simulations (MPS) and finally, the training of such a data set based on a new neural network architecture called inverse Convolution Neural Networks (iCNN) that is specifically developed to identify patterns. As demonstrated by the results on a field magnetic data set, this approach shows its competitiveness with human segmentation and indicates promising results.

Abstract 16: Mathieu Chambefort in Machine Learning for Geophysical & Geochemical Signals, Chambefort 11:00 AM

Signal and Noise Detection using Recurrent Autoencoders on Seismic Marine Data

Mathieu Chambefort, Nicolas Salaun, Emilie Chautru, Stephan Clémençon and Guillaume Poulain

MINES ParisTech - PSL University Centre de Géosciences, CGG, and Telecom ParisTech, LTCI, Université Paris Saclay

In the Big Data era, geophysics are faced with new industrial contrains like processing more and more seismic data (more than 106 shot points per marine seismic survey [Belz and Dolymnyj, 2018]) in a more timely, reliable and efficient manner (improving signal enhancement, [Martin et al., 2015]). To deal with these challenges, we develop a deep learning approach based on recurrent LSTM ([Wong and Luo, 2018]) to the processing of seismic time series; this separates the signal from the noise based on the encoded information. This contribution provides empirical evidence that the representation provided by the internal layers of the deployed autoencoder encodes the original information well. More precisely, focus is here on the linear noise that possibly blurs marine seismic data ([Elboth et al., 2009]). The data under study is composed of massive synthetic shot points. The goal pursued is to design an autoencoder capable of detecting the possible occurrence of linear noise in the data. Next, the encoded information is classified. The obtained results are compared with those of a traditional technique, which essentially consists in applying directly a K-NN algorithm on the envelope of the analytical signal, as if all the dataset came from the same area.

Abstract 17: Zheng Zhou in Machine Learning for Geophysical & Geochemical Signals, Lin 11:05 AM

CO2 and Brine Leakage Detection Using Multi-Physics-Informed Convolutional Neural Networks

Zheng Zhou, Youzu Lin, Zhongping Zhang, Zan Wang, Robert Dilmore and George Guthrie

Electrical Engineering Department at State university of New York at Buffalo, Los Alamos National Laboratory, and National Energy Technology Laboratory, United States Department of Energy, Pittsburgh, PA 15236.

In carbon capture and sequestration, it is crucial to build effective monitoring techniques to detect both brine and CO2 leakage from legacy wells into underground sources of drinking water. The CO2 and brine leakage detection methods rely on geophysical observations from different physical
domains. Most of the current detection methods are built on physical models, and the leakage mass of CO2 and brine are detected separately. However, those physics-driven methods can be computationally demanding and yields low detection accuracy. In this paper, we developed a novel end-to-end data-driven detection method, called multi-physics-informed convolutional neural network (Multi-physics CNN), which directly learns a mapping relationship between physical measurements and leakage mass. Our Multi-physical CNN takes simulated reflection seismic and pressure data as inputs, and captures different patterns in leakage process. In particular, we capture two types of multi-physical features from seismic and pressure data, respectively. With those features, we can further detect the CO2 and brine leakage mass, simultaneously. We evaluate our novel method for CO2 and brine leakage mass detection task on simulated multi-physical datasets generated using Kimberlina 1.2 model. Our results show that our Multi-physics CNN yields promising results in detecting both leakage mass of CO2 and brine.

Abstract 18: B Ravi Kiran in Machine Learning for Geophysical & Geochemical Signals, Ravi Kiran 11:05 AM

Aerial LiDAR reconstruction using conditional GANs
B Ravi Kiran and Stefan Milz

Recently, aerial LiDAR data opened lots of new opportunities for many research disciplines like macroscopic geophysical analysis or archaeological investigations. However, LiDAR measurements are expensive and the data is not widely distributed or accessible. We propose a novel method for image to image translation performing HD-LiDAR reconstruction using RGB input images based on conditional GANs. The conditional mapping function of the generator $G: [c; z] \rightarrow y$ is transformed to $G: [x; z] \rightarrow y$, whereas $y$ represents the reconstructed LiDAR map and $c$ represents the condition. $c$ is replaced by the aligned aerial camera image $x$. $z$ represents the noise. Our approach is able to reconstruct LiDAR data as elevation maps based on small scaled training data, which includes RGB and LiDAR sample pairs based on 256 x 256 image matrices. The model offers the opportunity to complete geophysical LiDAR databases, where measurements are missing. The method is validated on the ISPRS dataset with an overall rRMSE of 14.53%.

Abstract 19: Cheng Zhan in Machine Learning for Geophysical & Geochemical Signals, Zhan 11:10 AM

Deep Semi-Supervised Learning Approach in Characterizing Salt on Seismic Images

Licheng Zhang, Zhenzhen Zhong, Meng Zhang, Tianxia Zhao, Varun Tyagi, Cheng Zhan

The salt body characterization is crucial in exploration and drilling. Due to its mobility, salt can move extensively to create diapirs, which generate significant traps for hydrocarbons, meanwhile, they present drilling hazards, as salt intrusion distorts the stress field making wellbore stability challenging in the geomechanical models. Here we utilized deep learning to identify salt body based on seismic images. Many techniques from the domains of geophysics and data science, have been successfully incorporated into the work-flow. The seismic images are produced from various locations. Here we use convolutional neural network that is the main methodology to process images segmentations. The underlying architecture is dedicated to restoring pixel position. In addition, the highlight here is Semi-Supervised learning, and we utilized the large unlabeled test set to gain more understanding of the data distribution, and the pseudo labeling of unlabeled test set comes from prediction. The metric implemented is “IOU”, Intersection over Union, which fundamentally measures how much area the predicted salt body overlay with the true answer. Our IOU score is
0.849, equivalent to 95% of the predicted salt body is correct. Challenges still exist as geology varies across locations, and the corresponding features might not share similar statistical properties.

Abstract 22: Bertrand Rouet-Leduc in Machine Learning for Geophysical & Geochemical Signals, Rouet-Leduc 02:00 PM

Estimating the State of Faults from the Full Continuous Seismic Data Using Machine Learning

Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing, but in general cannot be directly measured. Using machine learning, we show that instantaneous statistical characteristics of the seismic data are a fingerprint of the fault zone frictional state in laboratory experiments. Using a similar methodology in Earth, where we rely on other geophysical datasets as labels in order to extract informative signals from raw seismic waves, we show that subduction zones are continuously broadcasting a tremor-like signal that precisely informs of fault displacement rate throughout their slow earthquake slip cycle. We posit that this signal provides indirect, real-time access to frictional properties of megathrusts and may ultimately reveal a connection between slow slip and megaquakes.

Abstract 23: Joan Bruna in Machine Learning for Geophysical & Geochemical Signals, Bruna 02:20 PM

Geometric Deep Learning for Many-Particle and non Euclidean Systems

Across many areas of science, one is required to process data defined on irregular and non-Euclidean domains. For example, in particle physics, measurements in the LHC are highly variable particle collisions with cylindrical calorimeters, whereas the IceCube detector looks for neutrinos using an irregular 3d array of sensors. Despite such non-Euclidean structure, many of these tasks satisfy essential geometric priors, such as stability to deformations. In this talk, I will describe a broad family of neural architectures that leverage such geometric priors to learn efficient models with provable stability. I will also describe recent and current progress on several applications including particle physics and inverse problems.

Abstract 24: Claudia Hulbert in Machine Learning for Geophysical & Geochemical Signals, Hulbert 02:40 PM

Machine Learning Reveals the Coupling Between Slow Slips and Major Earthquakes

The potential connection between slow slips and earthquakes of large magnitude in subduction zones remains an open question in seismology. Slow slips (earthquakes releasing energy over long periods of times, up to several months) have been observed preceding major earthquake ruptures, suggesting that they may couple to or evolve into a megaquake.

We rely on supervised machine learning algorithms to analyze vast amounts of continuous seismic data, with the goal of identifying hidden signals preceding earthquakes. We find that continuous seismic signals identified in our previous studies of slow slip events carry information about the timing of impending earthquakes of large magnitude. Our results suggest that large earthquakes occur almost systematically in the same phase of the slow slip cycle, and point to a systematic, large-scale coupling between slow slip events and major earthquakes.

Abstract 26: Ivan Dokmanic in Machine Learning for Geophysical & Geochemical Signals, Dokmanic 03:30 PM
I will present a new learning-based approach to ill-posed inverse problems. Instead of directly learning the ill-posed inverse mapping, we learn an ensemble of simpler mappings from the data to the projections of the unknown model into random low-dimensional subspaces. We choose structured subspaces of piecewise-constant images on random Delaunay triangulations. With this choice, the projected inverse maps are simpler to learn in terms of robustness and generalization error. We form the reconstruction by combining the estimated subspace projections. This allows us to address inverse problems with extremely sparse data and still get good reconstructions of the unknown geometry; it also makes our method robust against arbitrary data corruptions not seen during training. Further, it marginalizes the role of the training dataset which is essential for applications in geophysics where ground-truth datasets are exceptionally scarce.

Abstract 27: Joe Morris in Machine Learning for Geophysical & Geochemical Signals, Morris 03:50 PM

Towards Realtime Hydraulic Fracture Monitoring using Machine Learning and Distributed Fiber Sensing

Joseph Morris, Christopher Sherman, Robert Mellors, Frederick Ryerson, Charles Yu, Michael Messerly

Abstract: Hydraulic fracturing operations (“pumping jobs”) are typically planned well in advance and do not allow for on-the-fly modification of control parameters, such as pumping rate and viscosity enhancement, that can be used to optimize the efficacy of the operation. Monitoring technologies, such as microseismic, have enabled an iterative cycle where observations of one pumping job may influence the selection of parameters of subsequent jobs. However, the significant time lag introduced by data processing and interpretation means that the iterative cycle may take weeks. We seek to enable a future where data collected during a job enables actionable, realtime decision making. Recent advances in distributed acoustic sensor (DAS) technology have produced a source of abundant new data for monitoring processes in the subsurface. Because of the massive dataset size (TB per day), developing a machine learning approach for interpreting DAS data is essential for effective use, such as in operational situations, which require near-realtime results. In our work, we use the massively parallel multi-physics code GEOS to generate a catalog of synthetic DAS measurements that are typical of those recorded during the stimulation of a hydraulic fracture. We then relate physical observables in the model such as the extents of the generated fractures, fluid flow, and interactions with pre-existing rock fractures to the DAS. These data quantify the potential of DAS measurements for revealing subsurface processes in realtime. Determining how best to construct and train a neural network is challenging. We will present our specific approach to building a deep neural network, including the nature of the training data and subsequent success of the network in identifying features.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

Abstract 28: Youzou Lin in Machine Learning for Geophysical & Geochemical Signals, Lin 04:10 PM

Accurate and Efficient Seismic Waveform-Inversion with Convolutional Neural Networks

Seismic full-waveform inversion has become a promising tool for velocity estimation in complex geological structures. The traditional seismic full-waveform inversion problems are usually posed as nonlinear optimization problems. Solving full-waveform inversion can be computationally
challenging for two major reasons. One is the expensive computational cost and the other is the issue of local minima. In this work, we develop an end-to-end data-driven inversion technique, called “InversionNet”, to learn a regression relationship from seismic waveform datasets to subsurface models. Specifically, we build a novel deep convolutional neural network with an encoder-decoder structure, where the encoder learns an abstract representation of the seismic data, which is then used by the decoder to produce a subsurface model. We further incorporate atrous convolutions in our network structure to account for contextual information from the subsurface model. We evaluate the performance of our InversionNet with synthetic seismic waveform data. The experiment results demonstrate that our InversionNet not only yields accurate inversion results but also produces almost real-time inversion.

Workshop on Security in Machine Learning

Nicolas Papernot, Florian Tramer, Kamalika Chaudhuri, Matt Fredrikson, Jacob Steinhardt

Fri Dec 07, 08:00 AM

There is growing recognition that ML exposes new vulnerabilities in software systems. Some of the threat vectors explored so far include training data poisoning, adversarial examples or model extraction. Yet, the technical community's understanding of the nature and extent of the resulting vulnerabilities remains limited. This is due in part to (1) the large attack surface exposed by ML algorithms because they were designed for deployment in benign environments---as exemplified by the IID assumption for training and test data, (2) the limited availability of theoretical tools to analyze generalization, (3) the lack of reliable confidence estimates. In addition, the majority of work so far has focused on a small set of application domains and threat models.

This workshop will bring together experts from the computer security and machine learning communities in an attempt to highlight recent work that contribute to address these challenges. Our agenda will complement contributed papers with invited speakers. The latter will emphasize connections between ML security and other research areas such as accountability or formal verification, as well as stress social aspects of ML misuses. We hope this will help identify fundamental directions for future cross-community collaborations, thus charting a path towards secure and trustworthy ML.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:15</td>
<td>Invited Talk by Aditi Raghunathan</td>
</tr>
<tr>
<td>11:00</td>
<td>Keynote by danah boyd</td>
</tr>
<tr>
<td>01:30</td>
<td>Invited Talk by Been Kim</td>
</tr>
<tr>
<td>02:15</td>
<td>Invited Talk by Moustapha Cisse</td>
</tr>
<tr>
<td>04:15</td>
<td>Invited Talk by Marta Kwiatkowska</td>
</tr>
<tr>
<td>04:45</td>
<td>Invited Talk by Somesh Jha</td>
</tr>
</tbody>
</table>

Visually grounded interaction and language

Florian Strub, Harm de Vries, Erik T Wijmans, Samyak Datta, Ethan Perez, Mateusz Malinowski, Stefan Lee, Peter Anderson, Aaron Courville, Jeremie MARY, Dhruv Batra, Devi Parikh, Olivier Pietquin, Chiori Hori, Tim Marks, Anoop Cherian
The dominant paradigm in modern natural language understanding is learning statistical language models from text-only corpora. This approach is founded on a distributional notion of semantics, i.e. that the "meaning" of a word is based only on its relationship to other words. While effective for many applications, methods in this family suffer from limited semantic understanding, as they miss learning from the multimodal and interactive environment in which communication often takes place - the symbols of language thus are not grounded in anything concrete. The symbol grounding problem first highlighted this limitation, that “meaningless symbols (i.e.) words cannot be grounded in anything but other meaningless symbols” [18].

On the other hand, humans acquire language by communicating about and interacting within a rich, perceptual environment. This behavior provides the necessary grounding for symbols, i.e. to concrete objects or concepts (i.e. physical or psychological). Thus, recent work has aimed to bridge vision, interactive learning, and natural language understanding through language learning tasks based on natural images (ReferIt [1], GuessWhat?! [2], Visual Question Answering [3,4,5,6], Visual Dialog [7], Captioning [8]) or through embodied agents performing interactive tasks [13,14,17,22,23,24,26] in physically simulated environments (DeepMind Lab [9], Baidu XWorld [10], OpenAI Universe [11], House3D [20], Matterport3D [21], GIBSON [24], MINOS [25], AI2-THOR [19], StreetLearn [17]), often drawing on the recent successes of deep learning and reinforcement learning. We believe this line of research poses a promising, long-term solution to the grounding problem faced by current, popular language understanding models.

While machine learning research exploring visually-grounded language learning may be in its earlier stages, it may be possible to draw insights from the rich research literature on human language acquisition. In neuroscience, recent progress in fMRI technology has enabled to better understand the interleave between language, vision and other modalities [15,16] suggesting that the brains shares neural representation of concepts across vision and language. Differently, developmental cognitive scientists have also argued that children acquiring various words is closely linked to them learning the underlying concept in the real world [12].

This workshop thus aims to gather people from various backgrounds - machine learning, computer vision, natural language processing, neuroscience, cognitive science, psychology, and philosophy - to share and debate their perspectives on why grounding may (or may not) be important in building machines that truly understand natural language.

We invite you to submit papers related to the following topics:
- language acquisition or learning through interactions
- visual captioning, dialog, and question-answering
- reasoning in language and vision
- visual synthesis from language
- transfer learning in language and vision tasks
- navigation in virtual worlds via natural-language instructions or multi-agent communication
- machine translation with visual cues
- novel tasks that combine language, vision and actions
- modeling of natural language and visual stimuli representations in the human brain
- position papers on grounded language learning
- audio visual scene-aware dialog
- audio-visual fusion

Submissions should be up to 4 pages excluding references, acknowledgements, and supplementary material, and should be NIPS format and
anonymous. The review process is double-blind.

We also welcome published papers that are within the scope of the workshop (without re-formatting). This specific papers do not have to be anonymous. They are not eligible for oral session and will only have a very light review process.

Please submit your paper to the following address: https://cmt3.research.microsoft.com/VIGIL2018

Accepted workshop papers are eligible to the pool of reserved conference tickets (one ticket per accepted papers).

If you have any question, send an email to: vigilworkshop2018@gmail.com

[26] Daniel Gordon, Aniruddha Kembhavi,

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Opening Remarks</td>
<td>Strub</td>
</tr>
<tr>
<td>08:40 AM</td>
<td>TBD 1</td>
<td></td>
</tr>
<tr>
<td>09:20 AM</td>
<td>TBD 2</td>
<td>Torralba</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Audio Visual Semantic Understanding Challenge</td>
<td>HORI, Marks</td>
</tr>
<tr>
<td>10:15 AM</td>
<td>Spotlights</td>
<td></td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:50 AM</td>
<td>TBD 3</td>
<td>Kiela</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>TBD 4</td>
<td></td>
</tr>
<tr>
<td>12:10 PM</td>
<td>Poster Sessions and Lunch (Provided)</td>
<td></td>
</tr>
<tr>
<td>01:40 PM</td>
<td>TBD 5</td>
<td>Lazaridou</td>
</tr>
<tr>
<td>02:20 PM</td>
<td>Learning simple spatial terms: Core and more</td>
<td>Landau</td>
</tr>
<tr>
<td>03:00 PM</td>
<td>Coffee Break and Poster Session</td>
<td></td>
</tr>
<tr>
<td>03:50 PM</td>
<td>Language Communication with Robots</td>
<td>Chai</td>
</tr>
</tbody>
</table>

Bayesian Deep Learning

Yarin Gal, Jose Miguel Hernández-Lobato, Christos Louizos, Andrew Wilson, Zoubin Ghahramani, Kevin P Murphy, Max Welling

Fri Dec 07, 08:00 AM

While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor take advantage of the well studied tools of probability theory. This has started to change following recent developments of tools and techniques combining Bayesian approaches with deep learning. The intersection of the two fields has received great interest from the community over the past few years, with the introduction of new deep learning models that take advantage of Bayesian techniques, as well as Bayesian models that incorporate deep learning elements [1-11]. In fact, the use of Bayesian techniques in deep learning can be traced back to the 1990s’, in seminal works by Radford Neal [12], David MacKay [13], and Dayan et al. [14]. These gave us tools to reason about deep models’ confidence, and achieved state-of-the-art performance on many tasks. However earlier tools did not adapt when new needs arose (such as scalability to big data), and were consequently forgotten. Such ideas are now being revisited in light of new advances in the field, yielding many exciting new results.
Extending on the workshop’s success from the past couple of years, this workshop will again study the advantages and disadvantages of the ideas above, and will be a platform to host the recent flourish of ideas using Bayesian approaches in deep learning and using deep learning tools in Bayesian modelling. The program includes a mix of invited talks, contributed talks, and contributed posters. The main theme this year will be applications of Bayesian deep learning in the real world, highlighting the requirements of practitioners from the research community. Future directions for the field will be debated in a panel discussion.

The BDL workshop was the second largest workshop at NIPS over the past couple of years, with last year’s workshop seeing an almost 100% increase in the number of submissions (75 submissions in total), attracting sponsorship from Google, Microsoft Ventures, Uber, and Qualcomm in the form of student travel awards.

Topics:
Probabilistic deep models for classification and regression (such as extensions and application of Bayesian neural networks),
Generative deep models (such as variational autoencoders),
Incorporating explicit prior knowledge in deep learning (such as posterior regularization with logic rules),
Approximate inference for Bayesian deep learning (such as variational Bayes / expectation propagation / etc. in Bayesian neural networks),
Scalable MCMC inference in Bayesian deep models,
Deep recognition models for variational inference (amortized inference),
Model uncertainty in deep learning,
Bayesian deep reinforcement learning,
Deep learning with small data,
Deep learning in Bayesian modelling,
Probabilistic semi-supervised learning techniques,
Active learning and Bayesian optimization for experimental design,
Applying non-parametric methods, one-shot learning, and Bayesian deep learning in general,
Implicit inference,
Kernel methods in Bayesian deep learning.

Call for papers:
A submission should take the form of an extended abstract (3 pages long) in PDF format using the NIPS style. Author names do not need to be anonymized and references (as well as appendices) may extend as far as needed beyond the 3 page upper limit. If research has previously appeared in a journal, workshop, or conference (including NIPS 2017 conference), the workshop submission should extend that previous work. Submissions will be accepted as contributed talks or poster presentations.

Related previous workshops:
Bayesian Deep Learning (NIPS 2017)
Principled Approaches to Deep Learning (ICML 2017)
Bayesian Deep Learning (NIPS 2016)
Data-Efficient Machine Learning (ICML 2016)
Deep Learning Workshop (ICML 2015, 2016)
Deep Learning Symposium (NIPS 2015 symposium)
Advances in Approximate Bayesian Inference (NIPS 2015)
Black box learning and inference (NIPS 2015)
Deep Reinforcement Learning (NIPS 2015)
Deep Learning and Representation Learning (NIPS 2014)
Advances in Variational Inference (NIPS 2014)

Schedule
Abstracts (1):

Abstract 1: **Opening Remarks in Bayesian Deep Learning**, *Gal* 08:00 AM

Introductory comments by the organisers.

### Deep Reinforcement Learning

*Pieter Abbeel, David Silver, Satinder Singh, Joelle Pineau, Joshua Achiam, Rein Houthooft, Aravind Srinivas*

**Fri Dec 07, 08:00 AM**

In recent years, the use of deep neural networks as function approximators has enabled researchers to extend reinforcement learning techniques to solve increasingly complex control tasks. The emerging field of deep reinforcement learning has led to remarkable empirical results in rich and varied domains like robotics, strategy games, and multiagent interaction. This workshop will bring together researchers working at the intersection of deep learning and reinforcement learning, and it will help interested researchers outside of the field gain a high-level view about the current state of the art and potential directions for future contributions.
Bayesian nonparametric (BNP) methods are well suited to the large data sets that arise in a wide variety of applied fields. By making use of infinite-dimensional mathematical structures, BNP methods allow the complexity of a learned model to grow as the size of a data set grows, exhibiting desirable Bayesian regularization properties for small data sets and allowing the practitioner to learn ever more from larger data sets. These properties have resulted in the adoption of BNP methods across a diverse set of application areas---including, but not limited to, biology, neuroscience, the humanities, social sciences, economics, and finance.

This workshop aims to highlight recent advances in modeling and computation through the lens of applied, domain-driven problems that require the infinite flexibility and interpretability of BNP. In this workshop, we will explore new BNP methods for diverse applied problems, including cutting-edge models being developed by application domain experts. We will also discuss the limitations of existing methods and discuss key problems that need to be solved. A major focus of the workshop will be to expose participants to practical software tools for performing Bayesian nonparametric analyses. In particular, we plan to host hands-on tutorials to introduce workshop participants to some of the software packages that can be used to easily perform posterior inference for BNP models. On the software panel, we will have researchers who have experience with BNP and development experience with popular software systems, such as TensorFlow, Edward, Stan, and Autograd.

We expect workshop participants to come from a variety of fields, including but not limited to machine learning, statistics, engineering, the social sciences, and biological sciences. The workshop will be relevant both to BNP experts as well as those interested in learning how to apply BNP models. There will be a special emphasis on novel application areas and computational developments that make BNP more accessible to the broader machine learning audience. Participants will leave the workshop with (i) exposure to recent advances in the field, (ii) hands-on experience with software implementing BNP methods, and (iii) an idea of the current major challenges in the field. These goals will be accomplished through a series of invited and contributed talks, a poster session, and at least one hands-on tutorial session where participants can get their hands dirty with BNP methods.

This workshop builds off of:
2. NIPS 2016: “Practical Bayesian Nonparametrics”: https://sites.google.com/site/nipsbnp2016/, which have spanned various areas of BNP, such as theory, applications and computation. This year’s workshop will have a fresh take on recent developments in BNP in connection to the broader range of research in statistics, machine learning, and application domains.

The 2018 workshop has received an endorsement from the International Society of Bayesian Analysis (ISBA) and sponsorship from Google.

Organizing Committee:
Diana Cai (Princeton)
Trevor Campbell (MIT/UBC)
Mike Hughes (Harvard/Tufts)
Tamara Broderick (MIT)
Nick Foti (U Washington)
Sinead Williamson (UT Austin)
### Advisory Committee:
Emily Fox (U Washington)
Antonio Lijoi (Bocconi U)
Sonia Petrone (Bocconi U)
Igor Prünster (Bocconi U)
Erik Sudderth (UC Irvine)

### Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:20</td>
<td>Opening remarks</td>
<td></td>
</tr>
<tr>
<td>08:30</td>
<td>Invited Talk 1</td>
<td>Dunson</td>
</tr>
<tr>
<td>09:00</td>
<td>Invited Talk 2</td>
<td>Bloem-Reddy</td>
</tr>
<tr>
<td>09:30</td>
<td>Contributed Talk 1</td>
<td></td>
</tr>
<tr>
<td>09:45</td>
<td>Poster Spotlights</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Invited Talk 3</td>
<td>Chaney</td>
</tr>
<tr>
<td>11:45</td>
<td>Poster Session</td>
<td>Masoero, Rukat, Liu, Ray Chowdhury, Coelho de Castro, Wehrhahn, Saad, Verma, Hsu, Cabreros, Prabhakaran, Sun, Rischard</td>
</tr>
<tr>
<td>12:00</td>
<td>TensorFlow Probability Tutorial</td>
<td></td>
</tr>
<tr>
<td>02:00</td>
<td>Invited Talk 4</td>
<td>Futoma</td>
</tr>
<tr>
<td>02:30</td>
<td>Software Panel</td>
<td>Letham</td>
</tr>
<tr>
<td>03:30</td>
<td>Invited Talk 5</td>
<td></td>
</tr>
</tbody>
</table>

---

**MLSys: Workshop on Systems for ML and Open Source Software**

*Aparna Lakshmiratan, Sarah Bird, Siddhartha Sen, Joseph Gonzalez, Dan Crankshaw*

Fri Dec 07, 08:00 AM

This workshop is part two of a two-part series with one day focusing on ML for Systems and the other on Systems for ML. Although the two workshops are being led by different organizers, we are coordinating our call for papers to ensure that the workshops complement each other and that submitted papers are routed to the appropriate venue.

The ML for Systems workshop focuses on developing ML to optimize systems while we focus on designing systems to enable large scale ML with Systems for ML. Both fields are mature enough to warrant a dedicated workshop. Organizers on both sides are open to merging in the future, but this year we plan to run them separately on two different days.

A new area is emerging at the intersection of artificial intelligence, machine learning, and systems design. This has been accelerated by the explosive growth of diverse applications of ML in production, the continued growth in data volume, and the complexity of large-scale learning systems. The
goal of this workshop is to bring together experts working at the crossroads of machine learning, system design and software engineering to explore the challenges faced when building large-scale ML systems. In particular, we aim to elicit new connections among these diverse fields, identifying theory, tools and design principles tailored to practical machine learning workflows. We also want to think about best practices for research in this area and how to evaluate it. The workshop will cover state of the art ML and AI platforms and algorithm toolkits (e.g. TensorFlow, PyTorch1.0, MXNet etc.), as well as dive into machine learning-focused developments in distributed learning platforms, programming languages, data structures, GPU processing, and other topics.

This workshop will follow the successful model we have previously run at ICML, NIPS and SOSP 2017.

Our plan is to run this workshop annually co-located with one ML venue and one Systems venue, to help build a strong community which we think will complement newer conferences like SysML targeting research at the intersection of systems and machine learning. We believe this dual approach will help to create a low barrier to participation for both communities.

**Schedule**

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 AM</td>
<td>Welcome</td>
</tr>
<tr>
<td>09:15 AM</td>
<td>Invited Talk (Bryan Catanzaro, NVidia)</td>
</tr>
<tr>
<td>09:45 AM</td>
<td>Invited Talk (Aish Fentin, Netflix)</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Poster Spotlights</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch</td>
</tr>
</tbody>
</table>

**ML Systems Updates**

- Monga, Chintala
- Moreau, Chollet
- Crankshaw
- Nishihara, Tokui

**02:30 PM**

- Posters and Coffee
Recent years have seen rapid progress in meta-learning methods, which learn (and optimize) the performance of learning methods based on data, generate new learning methods from scratch, or learn to transfer knowledge across tasks and domains. Meta-learning can be seen as the logical conclusion of the arc that machine learning has undergone in the last decade, from learning classifiers, to learning representations, and finally to learning algorithms that themselves acquire representations and classifiers. The ability to improve one’s own learning capabilities through experience can also be viewed as a hallmark of intelligent beings, and there are strong connections with work on human learning in neuroscience.

Meta-learning methods are also of substantial practical interest, since they have, e.g., been shown to yield new state-of-the-art automated machine learning methods, novel deep learning architectures, and substantially improved one-shot learning systems.

Some of the fundamental questions that this workshop aims to address are:
- What are the fundamental differences in the learning “task” compared to traditional “non-meta” learners?
- Is there a practical limit to the number of meta-learning layers (e.g., would a meta-meta-meta-learning algorithm be of practical use)?
- How can we design more sample-efficient meta-learning methods?
- How can we exploit our domain knowledge to effectively guide the meta-learning process?
- What are the meta-learning processes in nature (e.g., in humans), and how can we take inspiration from them?
- Which ML approaches are best suited for meta-learning, in which circumstances, and why?
- What principles can we learn from meta-learning to help us design the next generation of learning systems?

The goal of this workshop is to bring together researchers from all the different communities and topics that fall under the umbrella of meta-learning. We expect that the presence of these different communities will result in a fruitful exchange of ideas and stimulate an open discussion about the current challenges in meta-learning, as well as possible solutions.

In terms of prospective participants, our main targets are machine learning researchers interested in the processes related to understanding and improving current meta-learning algorithms. Specific target communities within machine learning include, but are not limited to: meta-learning, AutoML, reinforcement learning, deep learning, optimization, evolutionary computation, and Bayesian optimization. Our invited speakers also include researchers who study human learning, to provide a broad perspective to the attendees.
NIPS 2018 Competitions, day 2:
Live NIPS competitions & Machine Learning Challenges "in the Wild"

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 AM</td>
<td>Morning welcome and introduction</td>
</tr>
<tr>
<td>08:10 AM</td>
<td>Facebook project on developing benchmarks of algorithms in realistic settings</td>
</tr>
<tr>
<td>08:40 AM</td>
<td>Machine Learning Challenges for Researching Human-Machine Teaming</td>
</tr>
<tr>
<td>09:10 AM</td>
<td>Live competition: Pommerman</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Break, poster viewing</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Renewal news recommendation platform</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>Panel discussion. Design principles and implementation issues</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch break and poster viewing</td>
</tr>
<tr>
<td>01:00 PM</td>
<td>Afternoon welcome and announcements (organizers)</td>
</tr>
<tr>
<td>01:10 PM</td>
<td>Wild evaluation of chat-bots</td>
</tr>
<tr>
<td>01:40 PM</td>
<td>Measuring Progress in Robotics</td>
</tr>
<tr>
<td>08:40 PM</td>
<td>Learning to run a power network</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>Live competition: The AI Driving Olympics</td>
</tr>
<tr>
<td>05:30 PM</td>
<td>Panel discussion: Opportunities to organize new impactful challenges</td>
</tr>
</tbody>
</table>

Abstracts (2):

**Abstract 4:** Live competition: Pommerman in NIPS 2018 Competition Track Day 2, 09:10 AM

Setup and Opening Words.
Loading and running each game along with submitter presence at the front.
Closing, Prizes, and Tear Down.

**Abstract 15:** Live competition: The AI Driving Olympics in NIPS 2018 Competition Track Day 2, 03:30 PM

Welcome/presentation about the competition.
Running of the competitors entries, scoring and judging the winners.

**Wordplay: Reinforcement and Language Learning in Text-based Games**
Video games, via interactive learning environments like ALE [Bellemare et al., 2013], have been fundamental to the development of reinforcement learning algorithms that work on raw video inputs rather than featurized representations. Recent work has shown that text-based games may present a similar opportunity to develop RL algorithms for natural language inputs [Narasimhan et al., 2015, Haroush et al., 2018]. Drawing on insights from both the RL and NLP communities, this workshop will explore this opportunity, considering synergies between text-based and video games as learning environments as well as important differences and pitfalls.

Video games provide infinite worlds of interaction and grounding defined by simple, physics-like dynamics. While it is difficult, if not impossible, to simulate the full and social dynamics of linguistic interaction (see, e.g., work on user simulation and dialogue [Georgila et al., 2006, El Asri et al., 2016]), text-based games nevertheless present complex, interactive simulations that ground language in world and action semantics. Games like Zork [Infocom, 1980] rose to prominence in the age before advanced computer graphics. They use simple language to describe the state of the environment and to report the effects of player actions. Players interact with the environment through text commands that respect a predefined grammar, which, though simplistic, must be discovered in each game. Through sequential decision making, language understanding, and language generation, players work toward goals that may or may not be specified explicitly, and earn rewards (points) at completion or along the way.

Text-based games present a broad spectrum of challenges for learning algorithms. In addition to language understanding, successful play generally requires long-term memory and planning, exploration/experimentation, affordance extraction [Fulda et al., 2017], and common sense. Text games also highlight major open challenges for RL: the action space (text) is combinatorial and compositional, while game states are partially observable, since text is often ambiguous or underspecific. Furthermore, in text games the set of actions that affect the state is not known in advance but must be learned through experimentation, typically informed by prior world/linguistic knowledge.

There has been a host of recent work towards solving text games [Narasimhan et al., 2015, Fulda et al., 2017, Kostka et al., 2017, Zhilin, et al., 2017, Haroush et al., 2018]. Nevertheless, commercial games like Zork remain beyond the capabilities of existing approaches. We argue that addressing even a subset of the aforementioned challenges would represent important progress in machine learning. Agents that solve text-based games may further learn functional properties of language; however, it is unclear what limitations the constraints and simplifications of text games (e.g., on linguistic diversity) impose on agents trained to solve them.

This workshop will highlight research that investigates existing or novel RL techniques for text-based settings, what agents that solve text-based games (might) learn about language, and more generally whether text-based games provide a good testbed for research at the intersection of RL and NLP. The program will feature a collection of invited talks alongside contributed posters and spotlight talks, curated by a committee with broad coverage of the RL and NLP communities. Panel discussions will highlight perspectives of influential researchers from both
fields and encourage open dialogue. We will also pose a text-based game challenge several months in advance of the workshop (a similar competition is held annually at the IEEE Conference on Computational Intelligence and Games). This optional component will enable participants to design, train, and test agents in a carefully constructed, interactive text environment. The best-performing agent(s) will be recognized and discussed at the workshop. In addition to the exchange of ideas and the initiation of collaboration, an expected outcome is that text-based games emerge more prominently as a benchmark task to bridge RL and NLP research.

Relevant topics to be addressed at the workshop include (but are not limited to):
- RL in compositional, combinatorial action spaces
- Open RL problems that are especially pernicious in text-based games, like (sub)goal identification and efficient experimentation
- Grounded language understanding
- Online language acquisition
- Affordance extraction (on the fly)
- Language generation and evaluation in goal-oriented settings
- Automatic or crowdsourcing methods for linguistic diversity in simulations
- Use of language to constrain or index RL policies
[Andreas et al., 2017]

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Opening Remarks</td>
</tr>
<tr>
<td>08:40</td>
<td>Invited Talk 1</td>
</tr>
<tr>
<td>09:20</td>
<td>Accepted Paper Presentation 1</td>
</tr>
<tr>
<td>09:50</td>
<td>Invited Talk 2</td>
</tr>
<tr>
<td>11:00</td>
<td>Invited Talk 3</td>
</tr>
<tr>
<td>11:40</td>
<td>Lunch</td>
</tr>
<tr>
<td>01:00</td>
<td>Invited Talk 4</td>
</tr>
<tr>
<td>01:40</td>
<td>Accepted Paper Presentation 2</td>
</tr>
<tr>
<td>02:10</td>
<td>Invited Talk 5</td>
</tr>
<tr>
<td>03:15</td>
<td>Poster 1-Minute Madness</td>
</tr>
<tr>
<td>03:30</td>
<td>Poster Session</td>
</tr>
<tr>
<td>04:20</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>04:30</td>
<td>Textworld Competition Announcement</td>
</tr>
<tr>
<td>05:00</td>
<td>Panel Discussion</td>
</tr>
<tr>
<td>06:00</td>
<td>Closing Remarks</td>
</tr>
</tbody>
</table>

Learning by Instruction

Shashank Srivastava, Igor Labutov, Bishan Yang, Amos Azaria, Tom Mitchell

Sat Dec 08, 08:00 AM

Today machine learning is largely about pattern discovery and function approximation. But as computing devices that interact with us in natural language become ubiquitous (e.g., Siri, Alexa, Google Now), and as computer perceptual abilities become more accurate, they open an exciting possibility of enabling end-users to teach machines
similar to the way in which humans teach one another.

Natural language conversation, gesturing, demonstrating, teleoperating and other modes of communication offer a new paradigm for machine learning through instruction from humans. This builds on several existing machine learning paradigms (e.g., active learning, supervised learning, reinforcement learning), but also brings a new set of advantages and research challenges that lie at the intersection of several fields including machine learning, natural language understanding, computer perception, and HCI.

The aim of this workshop is to engage researchers from these diverse fields to explore fundamental research questions in this new area, such as:

- How do people interact with learning agents when teaching them new learning tasks and knowledge?
- What novel learning algorithms are needed to learn from grounded human interaction?
- What are the practical considerations towards building practical systems that can learn from instruction?

**Schedule**

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:30 AM</td>
<td>An Cognitive Architecture Approach to Interactive Task Learning Laird</td>
</tr>
</tbody>
</table>

Integration of Deep Learning Theories

*Richard Baraniuk, Anima Anandkumar, Stephane Mallat, Ankit Patel, nh\textit{t H}*

Sat Dec 08, 08:00 AM

Deep learning has driven dramatic performance advances on numerous difficult machine learning tasks in a wide range of applications. Yet, its theoretical foundations remain poorly understood, with many more questions than answers. For example: What are the modeling assumptions underlying deep networks? How well can we expect deep networks to perform? When a certain network succeeds or fails, can we determine why and how? How can we adapt deep learning to new domains in a principled way?

While some progress has been made recently towards a foundational understanding of deep learning, most theory work has been disjointed, and a coherent picture has yet to emerge. Indeed, the current state of deep learning theory is like the fable “The Blind Men and the Elephant”.

The goal of this workshop is to provide a forum where theoretical researchers of all stripes can come together not only to share reports on their individual progress but also to find new ways to join forces towards the goal of a coherent theory of deep learning. Topics to be discussed include:

- Statistical guarantees for deep learning models
- Expressive power and capacity of neural networks
- New probabilistic models from which various deep architectures can be derived
- Optimization landscapes of deep networks
- Deep representations and invariance to latent factors
- Tensor analysis of deep learning
- Deep learning from an approximation theory perspective
- Sparse coding and deep learning
- Mixture models, the EM algorithm, and deep learning

In addition to invited and contributed talks by leading researchers from diverse backgrounds, the workshop will feature an extended poster/discussion
session and panel discussion on which combinations of ideas are most likely to move theory of deep learning forward and which might lead to blind alleys.

### Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Opening Remarks</td>
<td>Mallat</td>
</tr>
<tr>
<td>08:40 AM</td>
<td>Plenary Talk 1</td>
<td>Arora</td>
</tr>
<tr>
<td>09:20 AM</td>
<td>Invited Talk 1</td>
<td>Sulam, Elad</td>
</tr>
<tr>
<td>09:50 AM</td>
<td>Contributed Talk 1</td>
<td>Nguyen</td>
</tr>
<tr>
<td>10:10 AM</td>
<td>Contributed Talk 2</td>
<td>Hirn</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:50 AM</td>
<td>Plenary Talk 2</td>
<td>Chaudhuri</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>Invited Talk 2</td>
<td>Higgins</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>01:30 PM</td>
<td>Plenary Talk 3</td>
<td>Fox</td>
</tr>
<tr>
<td>02:10 PM</td>
<td>Invited Talk 3</td>
<td>Lipton</td>
</tr>
<tr>
<td>02:40 PM</td>
<td>Contributed Talk 3</td>
<td>Sanghavi, Shah, Shen, Zhao, Tian, Galanti, Li, Cohen, Rothchild, Baratin, Arpit, Papalexakis, Perlmutter, Makkova, de Haan, Lin, Kang, Lee</td>
</tr>
<tr>
<td>03:50 PM</td>
<td>Plenary Talk 4</td>
<td>Soatto</td>
</tr>
<tr>
<td>04:30 PM</td>
<td>Invited Talk 4</td>
<td>Hoffman</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>Breakout Session</td>
<td></td>
</tr>
<tr>
<td>05:30 PM</td>
<td>Panel Discussion</td>
<td></td>
</tr>
<tr>
<td>06:25 PM</td>
<td>Closing Remarks</td>
<td>Patel</td>
</tr>
</tbody>
</table>

---

### Machine Learning for Systems

Anna Goldie, Azalia Mirhoseini, Jonathan Raiman, Kevin Swersky, Milad Hashemi

Sat Dec 08, 08:00 AM

This workshop is part two of a two-part series with one day focusing on Machine Learning for Systems and the other on Systems for Machine Learning. Although the two workshops are being led by different organizers, we are coordinating our call for papers to ensure that the workshops complement each other and that submitted papers are routed to the appropriate venue.

The Systems for Machine Learning workshop focuses on designing systems to enable ML, whereas we focus on developing ML to optimize systems. Both fields are mature enough to warrant a dedicated workshop. Organizers on both sides are open to merging in the future, but this year we plan to run them separately on two different days.

Designing specialized hardware and systems for deep learning is a topic that has received significant research attention, both in industrial and academic settings, leading to exponential increases in compute capability in GPUs and accelerators.
However, using machine learning to optimize and accelerate software and hardware systems is a lightly explored but promising field, with broad implications for computing as a whole. Very recent work has outlined a broad scope where deep learning vastly outperforms traditional heuristics, including topics such as: scheduling [1], data structure design [2], microarchitecture [3], compilers [4], and control of warehouse scale computing systems [5].

The focus of this workshop is to expand upon this recent work and build a community focused on using machine learning in computer systems problems. We seek to improve the state of the art in the areas where learning has already proven to perform better than traditional heuristics, as well as expand to new areas throughout the system stack such as hardware/circuit design and operating/runtime systems.

By forming a community of academic and industrial researchers who are excited about this area, we seek to build towards intelligent, self optimizing systems and answer questions such as: How do we generate and share high quality datasets that span the layers of the system stack? Which learned representations best represent code performance and runtime? Which simulators and simulation methodologies provide a tractable proving ground for techniques like reinforcement learning?

To this end, the target audience for this workshop includes a wide variety of attendees from state-of-the-art researchers in machine learning to domain experts in computer systems design. We have invited a broad set of expert speakers to present the potential for impact of combining machine learning research with computer systems. We hope that providing a formal venue for researchers from both fields to meet and interact will push forward both fundamental research in ML as well as real-world impact to computer systems design and implementation.

The workshop will host 6 speakers/panelists (all confirmed) and we will put out a call for researchers to submit relevant papers, up to 4 pages in the default NIPS style, that will undergo a peer review process. Selected works will be presented as spotlights, contributed talks and/or posters. Speakers will be invited to participate in an interactive panel discussion to conclude the workshop.

The organizers of this workshop span core research in machine learning, computer systems and architecture, as well as their intersection. Jointly, they have published in top-tier systems and machine learning conferences including: NIPS, ICML, ICLR, ISCA, MICRO, DAC, and SIGMETRICS.

References:
[6] Bayesian optimization for tuning the JVM, https://www.youtube.com/watch?v=YhNl468S8CI

Relational Representation Learning
Relational reasoning, *i.e.*, learning and inference with relational data, is key to understanding how objects interact with each other and give rise to complex phenomena in the everyday world. Well-known applications include knowledge base completion and social network analysis. Although many relational datasets are available, integrating them directly into modern machine learning algorithms and systems that rely on continuous, gradient-based optimization and make strong i.i.d. assumptions is challenging. Relational representation learning has the potential to overcome these obstacles: it enables the fusion of recent advancements like deep learning and relational reasoning to learn from high-dimensional data. Success of such methods can facilitate novel applications of relational reasoning in areas like scene understanding, visual question-answering, reasoning over chemical and biological domains, program synthesis and analysis, and decision-making in multi-agent systems.

How should we rethink classical representation learning theory for relational representations? Classical approaches based on dimensionality reduction techniques such as isoMap and spectral decompositions still serve as strong baselines and are slowly paving the way for modern methods in relational representation learning based on random walks over graphs, message-passing in neural networks, group-invariant deep architectures etc. amongst many others. How can systems be designed and potentially deployed for large scale representation learning? What are promising avenues, beyond traditional applications like knowledge base and social network analysis, that can benefit from relational representation learning?

This workshop aims to bring together researchers from both academia and industry interested in addressing various aspects of representation learning for relational reasoning. Topics include, but are not limited to:

* Algorithmic approaches. E.g., probabilistic generative models, message-passing neural networks, embedding methods, dimensionality reduction techniques, group-invariant architectures etc. for relational data
* Theoretical aspects. E.g., when and why do learned representations aid relational reasoning? How does the non-i.i.d. nature of relational data conflict with our current understanding of representation learning?
* Optimization and scalability challenges due to the inherent discreteness and curse of dimensionality of relational datasets
* Evaluation of learned relational representations
* Security and privacy challenges
* Domain-specific applications
* Any other topic of interest

NIPS 2018 Workshop on Machine Learning for Intelligent Transportation Systems 2018

* Li Erran Li, Anca Dragan, Juan Carlos Niebles, Silvio Savarese

Sat Dec 08, 08:00 AM

Our transportation systems are poised for a transformation as we make progress on autonomous vehicles, vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communication infrastructures, and smart road infrastructures (like smart traffic lights). But many challenges stand in the way of this transformation. For example, how do we make perception accurate and robust enough to accomplish safe autonomous driving? How do we generate policies that equip autonomous cars with
adaptive human negotiation skills when merging, overtaking, or yielding? How do we decide when a system is safe enough to deploy? And how do we optimize efficiency through intelligent traffic management and control of fleets?

To meet these requirements in safety, efficiency, control, and capacity, the systems must be automated with intelligent decision making. Machine learning will be an essential component of that. Machine learning has made rapid progress in the self-driving domain (e.g., in real-time perception and prediction of traffic scenes); has started to be applied to ride-sharing platforms such as Uber (e.g., demand forecasting); and by crowd-sourced video scene analysis companies such as Nexar (e.g., understanding and avoiding accidents). But to address the challenges arising in our future transportation system, we need to consider the transportation systems as a whole rather than solving problems in isolation, from prediction, to behavior, to infrastructure.

The goal of this workshop is to bring together researchers and practitioners from all areas of intelligent transportations systems to address core challenges with machine learning. These challenges include, but are not limited to pedestrian detection, intent recognition, and negotiation, coordination with human-driven vehicles, machine learning for object tracking, unsupervised representation learning for autonomous driving, deep reinforcement learning for learning driving policies, cross-modal and simulator to real-world transfer learning, scene classification, real-time perception and prediction of traffic scenes, uncertainty propagation in deep neural networks, efficient inference with deep neural networks predictive modeling of risk and accidents through telematics, modeling, simulation and forecast of demand and mobility patterns in large scale urban transportation systems, machine learning approaches for control and coordination of traffic leveraging V2V and V2X infrastructures,

The workshop will include invited speakers, panels, presentations of accepted papers, and posters. We invite papers in the form of short, long, and position papers to address the core challenges mentioned above. We encourage researchers and practitioners on self-driving cars, transportation systems and ride-sharing platforms to participate. Since this is a topic of broad and current interest, we expect at least 150 participants from leading university researchers, auto-companies and ride-sharing companies.

This will be the 3rd NIPS workshop in this series. Previous workshops have been very successful and have attracted large numbers of participants from both academia and industry.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45</td>
<td>Opening Remark</td>
<td>Li, Dragan</td>
</tr>
<tr>
<td>09:00</td>
<td>Invited talk: Alfredo Canziani, NYU</td>
<td>Canziani</td>
</tr>
<tr>
<td>09:30</td>
<td>Invited Talk: Drew Bagnell, CMU and Aurora</td>
<td>Bagnell</td>
</tr>
<tr>
<td>10:00</td>
<td>Invited Talk: Yimeng Zhang, Pony.ai</td>
<td>Zhang</td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee break: morning</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Invited Talk: Nathaniel Fairfield, Waymo</td>
<td>Fairfield</td>
</tr>
</tbody>
</table>
Abstract 8: **Invited Talk: Marco Pavone, Stanford in NIPS Workshop on Machine Learning for Intelligent Transportation Systems 2018**, Pavone 02:00 PM

Title: On safe and efficient human-robot vehicle interactions via CVAE-based intent modeling and reachability-based safety assurance

Abstract: In this talk I will present a decision-making and control stack for human-robot vehicle interactions. I will first discuss a data-driven approach for learning interaction dynamics between robot-driven and human-driven vehicles, based on recent advances in the theory of conditional variational autoencoders (CVAEs). I will then discuss how to incorporate such a learned interaction model into a real-time, intent-aware decision-making framework, with an emphasis on minimally-interventional strategies rooted in backward reachability analysis for ensuring safety even when other cars defy the robot’s predictions. Experiments on a full-scale steer-by-wire platform entailing traffic weaving maneuvers demonstrate how the proposed autonomy stack enables more efficient and anticipative autonomous driving behaviors, while avoiding collisions even when the other cars defy the robot’s predictions and take dangerous actions.

Abstract 12: **Invited Talk: Dorsa Sadigh, Stanford in NIPS Workshop on Machine Learning for Intelligent Transportation Systems 2018**, Sadigh 04:00 PM

Title: Altruistic Autonomy: Beating Congestion on Shared Roads

Abstract: Today the emergence of autonomous cars on public roads has become a reality. Autonomous vehicles on roads shared with human-driven cars can create a variety of challenges including influencing traffic flow when the transportation network is under heterogeneous use: when cars of differing levels of autonomy co-exist on the same road. In this talk, we will address some of the challenges of mixed-autonomy traffic networks via leveraging the power of autonomous vehicles. Specifically we will focus on two main approaches that use autonomous cars to positively influence congestion. First we discuss how local interactions between the vehicles can affect the global behavior of a traffic network. We will examine a high-level queuing framework to study the capacity of a mixed-autonomy transportation network, and then outline a lower-level control framework that leverages local interactions between cars to achieve a more efficient traffic flow via intelligent reordering of the cars. We provide theoretical bounds on the capacity that can be achieved by the network for given autonomy level. Second, we formalize the notion of altruistic autonomy—autonomous vehicles that are incentivized to take longer routes in order to alleviate congestion on mixed-autonomy roads. We then study the effects of altruistic autonomy on
roads shared between human drivers and autonomous vehicles. We develop a formal model of road congestion on shared roads based on the fundamental diagram of traffic, and discuss algorithms that compute optimal equilibria robust to additional unforeseen demand, and plan for optimal routings when users have varying degrees of altruism. We find that even with arbitrarily small altruism, total latency can be unboundedly lower than without altruism.

Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare

Andrew Beam, Tristan Naumann, Marzyeh Ghassemi, Matthew McDermott, Madalina Fiterau, Irene Y Chen, Brett Beaullieu-Jones, Mike Hughes, Farah Shamout, Corey Chivers, Jaz Kandola, Alexandre Yahi, Sam G Finlayson, Bruno Jedynak, Peter Schalm, Natalia Antropova, Jason Fries, Adrian Dalca

Sat Dec 08, 08:00 AM

Machine learning has had many notable successes within healthcare and medicine. However, nearly all such successes to date have been driven by supervised learning techniques. As a result, many other important areas of machine learning have been neglected and under appreciated in healthcare applications. In this workshop, we will convene a diverse set of leading researchers who are pushing beyond the boundaries of traditional supervised approaches. Attendees at the workshop will gain an appreciation for problems that are unique to healthcare and a better understanding of how machine learning techniques, including clustering, active learning, dimensionality reduction, reinforcement learning, causal inference, and others, may be leveraged to solve important clinical problems.

This year’s program will also include spotlight presentations and two poster sessions highlighting novel research contributions at the intersection of machine learning and healthcare. We will invite submission of two page abstracts (not including references) for poster contributions. Topics of interest include but are not limited to models for diseases and clinical data, temporal models, Markov decision processes for clinical decision support, multiscale data-integration, modeling with missing or biased data, learning with non-stationary data, uncertainty and uncertainty propagation, non i.i.d. structure in the data, critique of models, interpretable models, causality, model biases, transfer learning, and incorporation of non-clinical (e.g., socioeconomic) factors.

The broader goal of the NIPS 2018 Machine Learning for Health Workshop (ML4H) is to foster collaborations that meaningfully impact medicine by bringing together clinicians, health data experts, and machine learning researchers. Attendees at this workshop can also expect to broaden their network of collaborators to include clinicians and machine learning researchers who are focused on solving some of the most import problems in medicine and healthcare.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>04:00 PM</td>
<td>TBD Saria</td>
<td>Saria</td>
</tr>
</tbody>
</table>

Second Workshop on Machine Learning for Creativity and Design

Luba Elliott, Sander Dieleman, Rebecca Fiebrink, Jesse Engel, Adam Roberts, Tom White

Sat Dec 08, 08:00 AM
Over the past few years, generative machine learning and machine creativity have continued to grow and attract a wider audience to machine learning. Generative models enable new types of media creation across images, music, and text — including recent advances such as sketch-rnn and the Universal Music Translation Network. This one-day workshop broadly explores issues in the applications of machine learning to creativity and design. We will look at algorithms for generation and creation of new media and new designs, engaging researchers building the next generation of generative models (GANs, RL, etc). We investigate the social and cultural impact of these new models, engaging researchers from HCI/UX communities and those using machine learning to develop new creative tools. In addition to covering the technical advances, we also address the ethical concerns ranging from the use of biased datasets to building tools for better “DeepFakes”. Finally, we’ll hear from some of the artists and musicians who are adopting machine learning including deep learning and reinforcement learning as part of their own artistic process. We aim to balance the technical issues and challenges of applying the latest generative models to creativity and design with philosophical and cultural issues that surround this area of research.

Background
In 2016, DeepMind’s AlphaGo made two moves against Lee Sedol that were described by the Go community as “brilliant,” “surprising,” “beautiful,” and so forth. Moreover, there was little discussion surrounding the fact that these very creative moves were actually made by a machine; it was enough that they were great examples of go playing. At the same time, the general public showed more concern for other applications of generative models. Algorithms that allow for convincing voice style transfer (Lyrebird) or puppet-like video face control (Face2Face) have raised ethical concerns that generative ML will be used to make convincing forms of fake news.

Balancing this, the arts and music worlds have positively embraced generative models. Starting with DeepDream and expanding with image and video generation advances (e.g. GANs) we’ve seen lots of new and interesting art and music technologies provided by the machine learning community. We’ve seen research projects like Google Brain’s Magenta, Sony CSL’s FlowMachines and IBM’s Watson undertake collaborations and attempt to build tools and ML models for use by these communities.

Research
Recent advances in generative models enable new possibilities in art and music production. Language models can be used to write science fiction films (Sunspring), theatre plays (Beyond the Fence) and even replicate the style of individual authors (Deep Tingle). Generative models for image and video allow us to create visions of people, places and things that resemble the distribution of actual images (GANs etc). Sequence modelling techniques have opened up the possibility of generating realistic musical scores (MIDI generation etc) and even raw audio that resembles human speech and physical instruments (DeepMind’s WaveNet, MILA’s Char2Wav and Google’s NSynth). In addition, sequence modelling allows us to model vector images to construct stroke-based drawings of common objects according to human doodles (sketch-rnn). Lately, domain transfer techniques (FAIR’s Universal Music Translation Network) have enabled the translation of music across musical instruments, genres, and styles.

In addition to field-specific research, a number of papers have come out that are directly applicable to the challenges of generation and evaluation such as learning from human preferences (Christiano et al., 2017) and CycleGAN. The application of Novelty Search (Stanley), evolutionary complexification...
Another focus of the workshop is how to better enable human influence over generative models. This could include learning from human preferences, exposing model parameters in ways that are understandable and relevant to users in a given application domain (e.g., similar to Morris et al. 2008), enabling users to manipulate models through changes to training data (Fiebrink et al. 2011), allowing users to dynamically mix between multiple generative models (Akten & Grierson 2016), or other techniques. Although questions of how to make learning algorithms controllable and understandable to users are relatively nascent in the modern context of deep learning and reinforcement learning, such questions have been a growing focus of work within the human-computer interaction community (e.g., examined in a CHI 2016 workshop on Human-Centred Machine Learning), and the AI Safety community (e.g. Christiano et al. 2017, using human preferences to train deep reinforcement learning systems). Such considerations also underpin the new Google “People + AI Research” (PAIR) initiative.

Artists and Musicians
All the above techniques improve our capabilities of producing text, sound and images and have helped popularise the themes of machine learning and artificial intelligence in the art world with a number of art exhibitions (ZKM’s Open Codes, Frankfurter Kunstverein’s I am here to learn, NRW Forum’s Pendoran Vinci) and media art festivals (Impakt Festival 2018 Algorithmic Superstructures, Retune 2016) dedicated to the topic.

Art and music that stands the test of time however requires more than generative capabilities. Recent research includes a focus on novelty in creative adversarial networks (Elgammal et al., 2017) and considers how generative algorithms can integrate into human creative processes, supporting exploration of new ideas as well as human influence over generated content (Atken & Grierson 2016a, 2016b). Artists including Mario Klingemann, Roman Lipski, Mike Tyka, and Memo Akten have further contributed to this space of work by creating artwork that compellingly demonstrates capabilities of generative algorithms, and by publicly reflecting on the artistic affordances of these new tools. Other artists such as Mimi Onuoha, Caroline Sinders, and Adam Harvey have explored the ethical dimensions of machine learning technologies, reflecting on the issues of biased datasets and facial recognition.

The goal of this workshop is to bring together researchers interested in advancing art and music generation to present new work, foster collaborations and build networks.

In this workshop, we are particularly interested in how the following can be used in art and music generation: reinforcement learning, generative adversarial networks, novelty search and evaluation as well as learning from user preferences. We welcome submissions of short papers, demos and extended abstracts related to the above.

Like last year, there will be an open call for a display of artworks incorporating machine learning techniques. The exhibited works serve as a separate and more personal forum for collecting and sharing some of the latest creative works incorporating machine learning techniques with the NIPS community.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45</td>
<td>Kenneth Stanley</td>
<td>Stanley</td>
</tr>
</tbody>
</table>
Accurate prediction of atomistic properties is a crucial ingredient toward rational compound design in chemical and pharmaceutical industries. Many discoveries in chemistry can be guided by screening large databases of computational molecular structures and properties, but high level quantum-chemical calculations can take up to several days per molecule or material at the required accuracy, placing the ultimate achievement of in silico design out of reach for the foreseeable future. In large part the current state of the art for such problems is the expertise of individual researchers or at best highly-specific rule-based heuristic systems. Efficient methods in machine learning, applied to the prediction of atomistic properties as well as compound design and crystal structure prediction, can therefore have pivotal impact in enabling chemical discovery and foster fundamental insights.

Because of this, in the past few years there has been a flurry of recent work towards designing machine learning techniques for molecule and material data [1-38]. These works have drawn inspiration from and made significant contributions to areas of machine learning as diverse as learning on graphs to models in natural language processing. Recent advances enabled the acceleration of molecular dynamics simulations, contributed to a better understanding of interactions within quantum many-body system and increased the efficiency of density based quantum mechanical modeling methods. This young field offers unique opportunities for machine learning researchers and practitioners, as it presents a wide spectrum of challenges and open questions, including but not limited to representations of physical systems, physically constrained models, manifold learning, interpretability, model bias, and causality.

The goal of this workshop is to bring together researchers and industrial practitioners in the fields
of computer science, chemistry, physics, materials science, and biology all working to innovate and apply machine learning to tackle the challenges involving molecules and materials. In a highly interactive format, we will outline the current frontiers and present emerging research directions. We aim to use this workshop as an opportunity to establish a common language between all communities, to actively discuss new research problems, and also to collect datasets by which novel machine learning models can be benchmarked. The program is a collection of invited talks, alongside contributed posters. A panel discussion will provide different perspectives and experiences of influential researchers from both fields and also engage open participant conversation. An expected outcome of this workshop is the interdisciplinary exchange of ideas and initiation of collaboration.

Call for papers:

The 1 day NIPS 2018 Workshop on Machine Learning for Molecules and Materials is calling for contributions on theoretical models, empirical studies, and applications of machine learning for molecules and materials. We also welcome challenge papers on possible applications or datasets. Topics of interest (though not exhaustive) include: chemoinformatics, applications of deep learning to predict molecular properties, drug-discovery and material design, retrosynthesis and synthetic route prediction, modeling and prediction of chemical reaction data, and the analysis of molecular dynamics simulations. We invite submissions that either address new problems and insights for chemistry and quantum physics or present progress on established problems. The workshop includes a poster session, giving the opportunity to present novel ideas and ongoing projects. Submissions should be no longer than 10 pages in any format. Please email all submissions to:

nips2018moleculesworkshop@gmail.com

References

### Medical Imaging meets NIPS

**Ender Konukoglu, Ben Glocker, Hervé Lombaert, Marleen de Bruijine**

**Sat Dec 08, 08:00 AM**

#### Scope

"Medical Imaging meets NIPS' is a new satellite workshop established in 2017. The workshop aims to bring researchers together from the medical image computing and machine learning communities." The objective is to discuss the major challenges in the field and opportunities for joining forces. This year the **workshop will feature an oral and poster session** where accepted works are presented. In addition, there will be **a series of high-profile invited speakers** from industry, academia, engineering and medical sciences giving an overview of recent advances, challenges, latest technology and efforts for sharing clinical data.

#### Motivation

Medical imaging is facing a major crisis with an ever increasing complexity and volume of data and immense economic pressure. The interpretation of medical images pushes human abilities to the limit with the risk that critical patterns of disease go undetected. Machine learning has emerged as a key technology for developing novel tools in computer aided diagnosis, therapy and intervention. Still, progress is slow compared to other fields of visual recognition which is mainly due to the domain complexity and constraints in clinical applications which require most robust, accurate, and reliable solutions.

#### Call for Abstracts

"We invite submissions of extended abstracts" for

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:40</td>
<td>Invited Talk Session</td>
<td>Noe</td>
</tr>
<tr>
<td>AM 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Invited Talk Session</td>
<td>Marks, Isayev, Smidt</td>
</tr>
<tr>
<td>AM 2</td>
<td></td>
<td>Thomas</td>
</tr>
<tr>
<td>02:00</td>
<td>Invited Talk Session</td>
<td>Tkatchenko,</td>
</tr>
<tr>
<td>PM 3</td>
<td></td>
<td>Jaakkola, Wei</td>
</tr>
<tr>
<td>03:30</td>
<td>Invited Talk Session</td>
<td>Clementi</td>
</tr>
<tr>
<td>PM 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
oral and poster presentation during the workshop. **Submitting an abstract is an ideal way of engaging with the workshop and to showcase research in the area of machine learning for medical imaging**. Submitted work does not have to be original and can be already published elsewhere and/or can be of preliminary nature. There will be no workshop proceedings, but accepted abstracts together with author information will be made available on this website.

### Dates
* Submissions: **Monday, October 15th, 23:59 PST**
* Notifications: Wednesday, October 31st
* Workshop: Saturday, December 8th

### Invited Talks
* Max Welling (University of Amsterdam)
* Olaf Ronneberger (DeepMind Health)
* Tal Arbel (McGill University)
* Holger Roth (NVIDIA)

### Organizers
* Ender Konukoglu (ETH Zurich, Switzerland)
* Hervé Lombaert (ETS Montreal – Inria, Canada)
* Ben Glocker (Imperial College London, UK)
* Marleen de Bruijne (Erasmus MC, Rotterdam, The Netherlands)

### Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45 AM</td>
<td>Welcome</td>
</tr>
<tr>
<td>09:00 AM</td>
<td>Making the Case for using more Inductive Bias in Deep Learning</td>
</tr>
<tr>
<td>09:45 AM</td>
<td>The U-net does its job – so what next?</td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Oral session I</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch</td>
</tr>
<tr>
<td>01:00 PM</td>
<td>To be determined</td>
</tr>
<tr>
<td>01:45 PM</td>
<td>Oral session II</td>
</tr>
<tr>
<td>02:45 PM</td>
<td>Poster session</td>
</tr>
<tr>
<td>04:15 PM</td>
<td>TBD</td>
</tr>
<tr>
<td>05:00 PM</td>
<td>Oral session III</td>
</tr>
<tr>
<td>06:00 PM</td>
<td>Closing remarks</td>
</tr>
</tbody>
</table>

Abstracts (2):

Abstract 3: **The U-net does its job – so what next?** in Medical Imaging meets NIPS, Ronneberger 09:45 AM

U-net based architectures have demonstrated very high performance in a wide range of medical image segmentation tasks, but a powerful segmentation architecture alone is only one part of building clinically applicable tools. In my talk I'll present three projects from the DeepMind Health Research team that address these challenges. The first project, a collaboration with University College London Hospital, deals with the challenging task of the precise segmentation of radiosensitive head and neck anatomy in CT scans, an essential input for radiotherapy planning [1]. With a 3D U-net we reach a performance similar to human experts on the majority of anatomical classes. Beside some
minor architectural adaptations, e.g. to tackle the large imbalance of foreground to background voxels, a substantial focus of the project was in generating a high-quality test set [2] where each scan was manually segmented by two independent experts. Furthermore we introduced a new surface based performance metric, the surface DSC [3], designed to be a better proxy for the expected performance in a real-world radiotherapy setting than existing metrics.

The second project, together with Moorfields Eye Hospital, developed a system that analyses 3D OCT (optical coherence tomography) eye scans to provide referral decisions for patients [4]. The performance was on par with world experts with over 20 years experience. We use two network ensembles to decouple the variations induced by the imaging system from the patient-to-patient variations. The first ensemble of 3D U-nets creates clinically interpretable device-independent tissue map hypotheses; the second (3D dense-net based) ensemble maps the tissue map hypotheses to the diagnoses and referral recommendation. Adaptation to a new scanning device type only needed sparse manual segmentations on 152 scans, while the diagnosis model (trained with 14,884 OCT scans) could be reused without changes.

The third project deals with the segmentation of ambiguous images [5]. This is of particular relevance in medical imaging where ambiguities can often not be resolved from the image context alone. We propose a combination of a U-net with a conditional variational autoencoder that is capable of efficiently producing an unlimited number of plausible segmentation map hypotheses for a given ambiguous image. We show that each hypothesis provides an overall consistent segmentation, and that the probabilities of these hypotheses are well calibrated.

[1] Nikolov et al. (2018) "Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy" (soon available on ArXiv)
https://doi.org/10.1038/s41591-018-0107-6 (fulltext available from https://deepmind.com/blog/)

Abstract 7: To be determined in Medical Imaging meets NIPS, Roth 01:00 PM

TBD

Reinforcement Learning under Partial Observability

Joni Pajarinen, Chris Amato, Pascal Poupart, David Hsu

Sat Dec 08, 08:00 AM

Reinforcement learning (RL) has succeeded in many challenging tasks such as Atari, Go, and Chess and even in high dimensional continuous domains such as robotics. Most impressive successes are in tasks where the agent observes the task features fully. However, in real world problems, the agent usually can only rely on partial observations. In real time games the agent makes only local observations; in robotics the agent has to cope with noisy sensors, occlusions, and unknown dynamics. Even more fundamentally, any agent without a full a priori world model or without full
access to the system state, has to make decisions based on partial knowledge about the environment and its dynamics.

Reinforcement learning under partial observability has been tackled in the operations research, control, planning, and machine learning communities. One of the goals of the workshop is to bring researchers from different backgrounds together. Moreover, the workshop aims to highlight future applications. In addition to robotics where partial observability is a well known challenge, many diverse applications such as wireless networking, human-robot interaction and autonomous driving require taking partial observability into account.

Partial observability introduces unique challenges: the agent has to remember the past but also connect the present with potential futures requiring memory, exploration, and value propagation techniques that can handle partial observability. Current model-based methods can handle discrete values and take long term information gathering into account while model-free methods can handle high-dimensional continuous problems but often assume that the state space has been created for the problem at hand such that there is sufficient information for optimal decision making or just add memory to the policy without taking partial observability explicitly into account.

In this workshop, we want to go further and ask among others the following questions.

* How can we extend deep RL methods to robustly solve partially observable problems?
* Can we learn concise abstractions of history that are sufficient for high-quality decision-making?
* There have been several successes in decision making under partial observability despite the inherent challenges. Can we characterize problems where computing good policies is feasible?
* Since decision making is hard under partial observability do we want to use more complex models and solve them approximately or use (inaccurate) simple models and solve them exactly? Or not use models at all?
* How can we use control theory together with reinforcement learning to advance decision making under partial observability?
* Can we combine the strengths of model-based and model-free methods under partial observability?
* Can recent method improvements in general RL already tackle some partially observable applications which were not previously possible?
* How do we scale up reinforcement learning in multi-agent systems with partial observability?
* Do hierarchical models / temporal abstraction improve RL efficiency under partial observability?

**Schedule**

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Opening Remarks</td>
</tr>
<tr>
<td>08:40</td>
<td>Invited Talk 1</td>
</tr>
<tr>
<td>09:05</td>
<td>Invited Talk 2</td>
</tr>
<tr>
<td>09:30</td>
<td>Contributed Talk 1</td>
</tr>
<tr>
<td>09:45</td>
<td>Invited Talk 3</td>
</tr>
<tr>
<td>11:00</td>
<td>Contributed Talk 2</td>
</tr>
<tr>
<td>11:15</td>
<td>Invited Talk 4</td>
</tr>
<tr>
<td>11:40</td>
<td>Spotlights &amp; Poster Session</td>
</tr>
<tr>
<td>11:50</td>
<td>Invited Talk 5</td>
</tr>
<tr>
<td>14:00</td>
<td>Contributed Talk 3</td>
</tr>
</tbody>
</table>

Page 72 of 92
Privacy Preserving Machine Learning

Aurélien Bellet, Adria Gascon, Niki Kilbertus, Olga Ohrimenko, Mariana Raykova, Adrian Weller

Sat Dec 08, 08:00 AM

## [Website](https://ppml-workshop.github.io/ppml/)

## Description

This one day workshop focuses on privacy preserving techniques for training, inference, and disclosure in large scale data analysis, both in the distributed and centralized settings. We have observed increasing interest of the ML community in leveraging cryptographic techniques such as Multi-Party Computation (MPC) and Homomorphic Encryption (HE) for privacy preserving training and inference, as well as Differential Privacy (DP) for disclosure. Simultaneously, the systems security and cryptography community has proposed various secure frameworks for ML. We encourage both theory and application-oriented submissions exploring a range of approaches, including:

- secure multi-party computation techniques for ML
- homomorphic encryption techniques for ML
- hardware-based approaches to privacy preserving ML
- centralized and decentralized protocols for learning on encrypted data
- differential privacy: theory, applications, and implementations
- statistical notions of privacy including relaxations of differential privacy
- empirical and theoretical comparisons between different notions of privacy
- trade-offs between privacy and utility

We think it will be very valuable to have a forum to unify different perspectives and start a discussion about the relative merits of each approach. The workshop will also serve as a venue for networking people from different communities interested in this problem, and hopefully foster fruitful long-term collaboration.

AI for social good

Margaux Luck, Tristan Sylvain, Joseph Paul Cohen, Arsene Fansi Tchango, Valentine Goddard, Aurelie Helouis, Yoshua Bengio, Sam Greydanus, Cody Wild, Taras Kucherenko, Arya Farahi, Jonnie Penn, Sean McGregor, Mark Crowley, Abhishek Gupta, Kenny Chen, Myriam Côté

Sat Dec 08, 08:00 AM

# AI for Social Good

## Important information

[Workshop website](https://aiforsocialgood.github.io/2018/)


## Abstract

The “AI for Social Good” will focus on social problems for which artificial intelligence has the
potential to offer meaningful solutions. The problems we chose to focus on are inspired by the United Nations Sustainable Development Goals (SDGs), a set of seventeen objectives that must be addressed in order to bring the world to a more equitable, prosperous, and sustainable path. In particular, we will focus on the following areas: health, education, protecting democracy, urban planning, assistive technology for people with disabilities, agriculture, environmental sustainability, economic inequality, social welfare and justice. Each of these themes present opportunities for AI to meaningfully impact society by reducing human suffering and improving our democracies.

The AI for Social Good workshop divides the in-focus problem areas into thematic blocks of talks, panels, breakout planning sessions, and posters. Particular emphasis is given to celebrating recent achievements in AI solutions, and fostering collaborations for the next generation of solutions for social good.

First, the workshop will feature a series of invited talks and panels on agriculture and environmental protection, education, health and assistive technologies, urban planning and social services. Secondly, it will bring together ML researchers, leaders of social impact, people who see the needs in the field as well as philanthropists in a forum to present and discuss interesting research ideas and applications with the potential to address social issues. Indeed, the rapidly expanding field of AI has the potential to transform many aspects of our lives. However, two main problems arise when attempting to tackle social issues. There are few venues in which to share successes and failures in research at the intersection of AI and social problems, an absence this workshop is designed to address by showcasing these marginalized but impactful works of research. Also, it is difficult to find and evaluate problems to address for researchers with an interest on having a social impact. We hope this will inspire the creation of new tools by the community to tackle these important problems. Also, this workshop promotes the sharing of information about datasets and potential projects which could interest machine learning researchers who want to apply their skills for social good.

The workshop also explores how artificial intelligence can be used to enrich democracy, social welfare, and justice. A focus on these topics will connect researchers to civil society organizations, NGOs, local governments, and other organizations to enable applied AI research for beneficial outcomes. Various case-studies and discussions are introduced around these themes: summary of existing AI for good projects and key issues for the future, AI’s impact on economic inequality, AI approaches to social sciences, and civil society organizations.

The definition of what constitutes social good being essential to this workshop, we will have panel discussions with leading social scholars to frame how contemporary AI/ML applications relate to public and philosophical notions of social good. We also aim to define new, quantifiable, and impactful research questions for the AI/ML community. Also, we would like as an outcome of this event the creation of a platform to share data, a pact with leading tech companies to support research staff sabbaticals with social progress organizations, and the connection of researchers to on-the-ground problem owners and funders for social impact.

We invite contributions relating to any of the workshop themes or more broadly any of the UN SDGs. The models or approaches presented do not necessarily need to be of outstanding theoretical novelty, but should demonstrate potential for a strong social impact. We invite two types of submissions. First, we invite research work as short papers (4 page limit) for oral and/or poster presentation. Second, we invite two page abstracts presenting a specific solution that would, if
accepted, be discussed during round-table events. The short papers should focus on past and current work, showcasing actual results and ideally demonstrated beneficial effect on society, whereas the two page abstracts could highlight ideas that have not yet been applied in practice. These are designed to foster sharing different points of view ranging from the scientific assessment of feasibility, to discussion of practical constraints that may be encountered when they are deployed, also attracting interest from philanthropists invited to the event. The workshop provides a platform for developing these two page abstracts into real projects with a platform to connect with stakeholders, scientists, and funders.

**CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time**

*Isabelle Guyon, Evelyne Viegas, Sergio Escalera, Jacob D Abernethy*

**Sat Dec 08, 08:00 AM**

Challenges in machine learning and data science are competitions running over several weeks or months to resolve problems using provided datasets or simulated environments. The playful nature of challenges naturally attracts students, making challenge a great teaching resource. For this fifth edition of the CiML workshop at NIPS we want to go beyond simple data science challenges using canned data. We will explore the possibilities offered by challenges in which code submitted by participants are evaluated "in the wild", directly interacting in real time with users or with real or simulated systems. Organizing challenges "in the wild" is not new. One of the most impactful such challenge organized relatively recently is the DARPA grant challenge 2005 on autonomous navigation, which accelerated research on autonomous vehicles, leading to self-driving cars. Other high profile challenge series with live competitions include RoboCup, which has been running from the past 22 years. Recently, the machine learning community has started being interested in such interactive challenges, with last year at NIPS the learning to run challenge, an reinforcement learning challenge in which a human avatar had to be controlled with simulated muscular contractions, and the ChatBot challenge in which humans and robots had to engage into an intelligent conversation. Applications are countless for machine learning and artificial intelligence programs to solve problems in real time in the real world, by interacting with the environment. But organizing such challenges is far from trivial.

The workshop will give a large part to discussions around two principal axes: (1) Design principles and implementation issues; (2) Opportunities to organize new impactful challenges.

Our objectives include bringing together potential partner to organize new such challenges and stimulating "machine learning for good", i.e. the organization of challenges for the benefit of society. CiML is a forum that brings together workshop organizers, platform providers, and participants to discuss best practices in challenge organization and new methods and application opportunities to design high impact challenges. Following the success of previous years' workshops, we propose to reconvene and discuss new opportunities for challenges "in the wild", one of the hottest topics in challenge organization. We have invited prominent speakers having experience in this domain.

The audience of this workshop is targeted to workshop organizers, participants, and anyone with scientific problem involving machine learning, which may be formulated as a challenge. The emphasis of the workshop is on challenge design. Hence it complements nicely the workshop on the NIPS 2018 competition track and will help paving the way toward next year's competition program.

Submit abstract (up to 2 pages) before October 10
by sending email to nips2018@chalearn.org. See http://ciml.chalearn.org/ciml2018#CALL.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 AM</td>
<td>Morning Welcome - Isabelle Guyon and Evelyne Viegas</td>
</tr>
<tr>
<td>08:10 AM</td>
<td>Esteban Arcaute and Umut Ozertem - Facebook project on developing benchmarks of algorithms in realistic settings</td>
</tr>
<tr>
<td>08:40 AM</td>
<td>Laura Seaman - Project Alloy – Machine Learning Challenges for Researching Human-Machine Teaming</td>
</tr>
<tr>
<td>09:10 AM</td>
<td>Live competition 1: Pommerman</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>How to fail hosting data science contests with images, Evgeny Kuzin, Nizhibitsky, Artur Kuzin</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>ML Benchmark Tools Package, Ryan Turner, Uber AI Labs</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Corpus for AutoML Pipelines, Richard Lippmann, Swoop Vattam, Pooya Khorrami, and Cagri Dagli</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Beyond the Leaderboard, Adrienne M. Mendrik, Stephen R. Aylward</td>
</tr>
<tr>
<td>10:40 AM</td>
<td>Break, poster viewing 1</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Julien Hay, Bich-Liên Doan, Fabrice Popineau - Renewal news recommendation platform</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>Panel discussion. Design principles and implementation issues. Escalera</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch Break, poster viewing 2</td>
</tr>
<tr>
<td>01:00 PM</td>
<td>Afternoon Welcome - Isabelle Guyon and Evelyne Viegas</td>
</tr>
<tr>
<td>01:10 PM</td>
<td>Mikhail Burtsev and Varvara Logacheva - Wild evaluation of chat-bots</td>
</tr>
<tr>
<td>01:40 PM</td>
<td>Larry Jackel - Measuring Progress in Robotics</td>
</tr>
<tr>
<td>02:10 PM</td>
<td>Daniel Polani - Competitions to Challenge Artificial Intelligence: from the L-Game to RoboCup</td>
</tr>
</tbody>
</table>
02:40 PM  Antoine Marot - Learning to run a power network  

03:10 PM  Break, poster viewing 3  

03:10 PM  AutoDL challenge design and beta tests, Zhengying Liu, Olivier Bousquet, Andre Elisseeff, Isabelle Guyon, Adrien Pavao, Lisheng Sun-Hosoya, and Sebastien Treguer  

03:10 PM  Multi-Agent RL in MalmO (MARLO) Competition, Diego Perez-Liebana Katja Hofmann Sharada Prasanna Mohanty Noburu Kuno Andre Kramer Sam Devlin Raluca D. Gaina Daniel Ionita  

03:10 PM  L2RPN: Learning To Run a Power Network Competition, Antoine Marot, Balthazar Donon, Isabelle Guyon, Benjamin Donnot.  

03:10 PM  TrackML, a Particle Physics Tracking Machine Learning Challenge, Jean-Roch Vlimant (Caltech), Vincenzo Innocente, Andreas Salzburger (CERN), Ustyuzhanin, vlimant Isabelle Guyon (ChaLearn), Sabrina Amrouche, Tobias Golling, Moritz Kiehn (Geneva University),David Rousseau*, Yet  

03:10 PM  NASA Frontier Development Lab 2018, A. Bella, A. Chopra, W. Fawcett, R. Talebi, D. Angerhausen, A. Berea, N.A. Cabrol, C. Kempes, M. Mascaro  

03:30 PM  Live competition 2: The driving AI Olympics  

05:30 PM  Panel discussion: Opportunities to organize new impactful challenges.  

Infer to Control: Probabilistic Reinforcement Learning and Structured Control  

Leslie Kaelbling, Martin Riedmiller, Marc Toussaint, Igor Mordatch, Roy Fox, Tuomas Haarnoja
Reinforcement learning and imitation learning are effective paradigms for learning controllers of dynamical systems from experience. These fields have been empowered by recent success in deep learning of differentiable parametric models, allowing end-to-end training of highly nonlinear controllers that encompass perception, memory, prediction, and decision making. The aptitude of these models to represent latent dynamics, high-level goals, and long-term outcomes is unfortunately curbed by the poor sample complexity of many current algorithms for learning these models from experience.

Probabilistic reinforcement learning and inference of control structure are emerging as promising approaches for avoiding prohibitive amounts of controller–system interactions. These methods leverage informative priors on useful behavior, as well as controller structure such as hierarchy and modularity, as useful inductive biases that reduce the effective size of policy search space and shape the optimization landscape. Intrinsic and self-supervised signals can further guide the training process of distinct internal components — such as perceptual embeddings, predictive models, exploration policies, and inter-agent communication — to break down the hard holistic problem of control into more efficiently learnable parts.

Effective inference methods are crucial for probabilistic approaches to reinforcement learning and structured control. Approximate control and model-free reinforcement learning exploit latent system structure and priors on policy structure, that are not directly evident in the controller–system interactions, and must be inferred by the learning algorithm. The growing interest of the reinforcement learning and optimal control community in the application of inference methods is synchronized well with the development by the probabilistic learning community of powerful inference techniques, such as probabilistic programming, variational inference, Gaussian processes, and nonparametric regression.

This workshop is a venue for the inference and reinforcement learning communities to come together in discussing recent advances, developing insights, and future potential in inference methods and their application to probabilistic reinforcement learning and structured control. The goal of this workshop is to catalyze tighter collaboration within and between the communities, that will be leveraged in upcoming years to rise to the challenges of real-world control problems.

Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 AM</td>
<td>Opening Remarks</td>
<td>Fox</td>
</tr>
<tr>
<td>08:40 AM</td>
<td>Invited Talk 1</td>
<td></td>
</tr>
<tr>
<td>09:10 AM</td>
<td>Contributed Talk 1</td>
<td></td>
</tr>
<tr>
<td>09:20 AM</td>
<td>Contributed Talk 2</td>
<td></td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Invited Talk 2</td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Invited Talk 3</td>
<td></td>
</tr>
<tr>
<td>10:30 AM</td>
<td>-- Coffee Break 1 --</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Invited Talk 4</td>
<td></td>
</tr>
<tr>
<td>11:30 AM</td>
<td>Spotlights</td>
<td></td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Poster Session 1</td>
<td></td>
</tr>
</tbody>
</table>
Emergent Communication Workshop

Jakob Foerster, Angeliki Lazaridou, Ryan Lowe, Igor Mordatch, Douwe Kiela, Kyunghyun Cho

Sat Dec 08, 08:00 AM

[Workshop website](https://sites.google.com/site/emecom2018/)

Abstract

Communication is one of the most impressive human abilities. The question of how communication arises has been studied for many decades, if not centuries. However, due to computational and representational limitations, past work was restricted to low dimensional, simple observation spaces. With the rise of deep reinforcement learning methods, this question can now be studied in complex multi-agent settings, which has led to flourishing activity in the area over the last two years. In these settings agents can learn to communicate in grounded multi-modal environments and rich communication protocols emerge.

Last year at NIPS 2017 we successfully organized the inaugural workshop on emergent communication ([https://sites.google.com/site/emecom2017/](https://sites.google.com/site/emecom2017/)). We had a number of interesting submissions looking into the question of how language can emerge using evolution (see this Nature paper that was also presented at the workshop last year, [https://www.nature.com/articles/srep34615](https://www.nature.com/articles/srep34615)) and under what conditions emerged language exhibits compositional properties, while others explored specific applications of agents that can communicate (e.g., answering questions about textual inputs, a paper presented by Google that was subsequently accepted as an oral presentation at ICLR this year, etc.).

While last year’s workshop was a great success, there are a lot of open questions. In particular, the more challenging and realistic use cases come from situations where agents do not have fully aligned interests and goals, i.e., how can we have credible communication amongst self-interested agents where each agent maximizes its own individual rewards rather than a joint team reward? This is a new computational modeling challenge for the community and recent preliminary results (e.g. “Emergent Communication through Negotiation”, Cao et al., ICLR 2018.) reinforce the fact that it is no easy feat.
Since machine learning has exploded in popularity recently, there is a tendency for researchers to only engage with recent machine learning literature, therefore at best reinventing the wheel and at worst recycling the same ideas over and over, increasing the probability of being stuck in local optima. For these reasons, just like last year, we want to take an interdisciplinary approach on the topic of emergent communication, inviting researchers from different fields (machine learning, game theory, evolutionary biology, linguistics, cognitive science, and programming languages) interested in the question of communication and emergent language to exchange ideas.

This is particularly important for this year’s focus, since the question of communication in general-sum settings has been an active topic of research in game theory and evolutionary biology for a number of years, while it’s a nascent topic in the area of machine learning.

Interpretability and Robustness in Audio, Speech, and Language

**Mirco Ravanelli, Dmitriy Serdyuk, Ehsan Variani, Bhuvana Ramabhadran**

Sat Dec 08, 08:00 AM

Domains of natural and spoken language processing have a rich history deeply rooted in information theory, statistics, digital signal processing and machine learning. With the rapid rise of deep learning (“deep learning revolution”), many of these systematic approaches have been replaced by variants of deep neural methods, that often achieve unprecedented performance levels in many fields. With more and more of the spoken language processing pipeline being replaced by sophisticated neural layers, feature extraction, adaptation, noise robustness are learnt inherently within the network. More recently, end-to-end frameworks that learn a mapping from speech (audio) to target labels (words, phones, graphemes, sub-word units, etc.) are becoming increasingly popular across the board in speech processing in tasks ranging from speech recognition, speaker identification, language/dialect identification, multilingual speech processing, code switching, natural language processing, speech synthesis and much much more.

A key aspect behind the success of deep learning lies in the discovered low and high-level representations, that can potentially capture relevant underlying structure in the training data. In the NLP domain, for instance, researchers have mapped word and sentence embeddings to semantic and syntactic similarity and argued that the models capture latent representations of meaning. Nevertheless, some recent works on adversarial examples have shown that it is possible to easily fool a neural network (such as a speech recognizer or a speaker verification system) by just adding a small amount of specially constructed noise. Such a remarkable sensibility towards adversarial attacks highlights how superficial the discovered representations could be, rising crucial concerns on the actual robustness, security, and interpretability of modern deep neural networks. This weakness naturally leads researchers to ask very crucial questions on what these models are really learning, how we can interpret what they have learned, and how the representations provided by current neural networks can be revealed or explained in a fashion that modeling power can be enhanced further. These open questions have recently raised the interest towards interpretability of deep models, as witness by the numerous works recently published on this topic in all the major machine learning conferences. Moreover, some workshops at NIPS 2016, NIPS 2017 and Interspeech 2017 have promoted research and discussion around this important issue.
With our initiative, we wish to further foster some progresses on interpretability and robustness of modern deep learning techniques, with a particular focus on audio, speech and NLP technologies. The workshop will also analyze the connection between deep learning and models developed earlier for machine learning, linguistic analysis, signal processing, and speech recognition. This way we hope to encourage a discussion amongst experts and practitioners in these areas with the expectation of understanding these models better and allowing to build upon the existing collective expertise.

The workshop will feature invited talks, panel discussions, as well as oral and poster contributed presentations. We welcome papers that specifically address one or more of the leading questions listed below:

1. Is there a theoretical/linguistic motivation/analysis that can explain how nets encapsulate the structure of the training data it learns from?
2. Does the visualization of this information (MDS, t-SNE) offer any insights to creating a better model?
3. How can we design more powerful networks with simpler architectures?
4. How can we exploit adversarial examples to improve the system robustness?
5. Do alternative methods offer any complimentary modeling power to what the networks can memorize?
6. Can we explain the path of inference?
7. How do we analyze data requirements for a given model? How does multilingual data improves learning power?

**Schedule**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45 AM</td>
<td>Workshop Opening</td>
<td></td>
</tr>
<tr>
<td>09:00 AM</td>
<td>Invited Speaker 1</td>
<td>Caruana</td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Invited Speaker 2</td>
<td>Yosinski</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Contributed Talks 1</td>
<td></td>
</tr>
<tr>
<td>10:30 AM</td>
<td>Coffee break + posters 1</td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Invited Speaker 3</td>
<td>Hermansky</td>
</tr>
<tr>
<td>11:30 AM</td>
<td>Invited Speaker 4</td>
<td>Bacchiani</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Contributed Talks 2</td>
<td></td>
</tr>
<tr>
<td>12:30 PM</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>01:30 PM</td>
<td>Invited Speaker 5</td>
<td>Schlüter</td>
</tr>
<tr>
<td>02:00 PM</td>
<td>Invited Speaker 6</td>
<td>Rush</td>
</tr>
<tr>
<td>02:30 PM</td>
<td>Contributed Talks 3</td>
<td></td>
</tr>
<tr>
<td>03:00 PM</td>
<td>Coffee break + posters 2</td>
<td></td>
</tr>
<tr>
<td>03:30 PM</td>
<td>Invited Speaker 7</td>
<td>Schuster</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>Invited Speaker 8</td>
<td></td>
</tr>
<tr>
<td>04:30 PM</td>
<td>Contributed Talks 4</td>
<td></td>
</tr>
<tr>
<td>05:00 PM</td>
<td>Panel Discussion</td>
<td></td>
</tr>
<tr>
<td>06:00 PM</td>
<td>Workshop Closing</td>
<td></td>
</tr>
</tbody>
</table>

Machine Learning Open Source Software 2018: Sustainable communities
Machine learning open source software (MLOSS) is one of the cornerstones of open science and reproducible research. Once a niche area for ML research, MLOSS today has gathered significant momentum, fostered both by scientific community, and more recently by corporate organizations. Along with open access and open data, it enables free reuse and extension of current developments in ML. The past mloss.org workshops at NIPS06, NIPS08, ICML10, NIPS13, and ICML15 successfully brought together researchers and developers from both fields, to exchange experiences and lessons learnt, to encourage interoperability between people and projects, and to demonstrate software to users in the ML community.

Continuing the tradition in 2018, we plan to have a workshop that is a mix of invited speakers, contributed talks and discussion/activity sessions. This year’s headline aims to give an insight of the challenges faced by projects as they seek long-term sustainability, with a particular focus on community building and preservation, and diverse teams. In the talks, we will cover some of the latest technical innovations as done by established and new projects. The main focus, however, will be on insights on project sustainability, diversity, funding and attracting new developers, both from academia and industry. We will discuss various strategies that helps promoting gender diversity in projects (e.g. implementing quotas etc.) and how to promote developer growth within a project.

We aim to make this workshop as diverse as possible within the field. This includes a gender balanced speakers, focussing on programming languages from different scientific communities, and in particular most of our invited speakers represent umbrella projects with a hugely diverse set of applications and users (NumFOCUS, openML, tidyverse).

With a call for participation for software project demos, we aim to provide improved outreach and visibility, especially for smaller OSS projects as typically present in academia. In addition, our workshop will serve as a gathering of OSS developers in academia, for peer to peer exchange of learnt lessons, experiences, and sustainability and diversity tactics.

The workshop will include an interactive session to produce general techniques for driving community engagement and sustainability, such as application templates (Google Summer of Code, etc), “getting started” guides for new developers, and a collection of potential funding sources. We plan to conclude the workshop with a discussion on the headline topic.

### Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:25 AM</td>
<td>Opening remarks</td>
</tr>
<tr>
<td>08:30 AM</td>
<td>Gina Helfrich, NumFOCUS</td>
</tr>
<tr>
<td>09:00 AM</td>
<td>Christoph Hertzberg, Eigen3</td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Joaquin Vanschoren, OpenML</td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Sherpa: Hyperparameter Optimization for Machine Learning Models</td>
</tr>
<tr>
<td>10:05 AM</td>
<td>How to iNNvestigate neural network’s predictions!</td>
</tr>
<tr>
<td>Time</td>
<td>Session Title</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>10:10</td>
<td>mlpack open-source machine learning library and community</td>
</tr>
<tr>
<td>10:15</td>
<td>Stochastic optimization library: Kasai SGDLibrary</td>
</tr>
<tr>
<td>10:20</td>
<td>Baseline: Strong, Extensible, Reproducible, Deep Learning Baselines for NLP</td>
</tr>
<tr>
<td>10:25</td>
<td>Discussion over morning coffee</td>
</tr>
<tr>
<td>11:00</td>
<td>DeepPavlov: An Open Source Library for Conversational AI</td>
</tr>
<tr>
<td>11:00</td>
<td>Gravity: A Mathematical Modeling Language for Optimization and Machine Learning</td>
</tr>
<tr>
<td>11:00</td>
<td>Flow: Open Source Reinforcement Learning for Traffic Control</td>
</tr>
<tr>
<td>11:00</td>
<td>Tensorflex: Tensorflow bindings for the Elixir programming language</td>
</tr>
<tr>
<td>11:00</td>
<td>Open Source Machine Learning Software Development in CERN(HEP): lessons and exchange of experience</td>
</tr>
<tr>
<td>11:00</td>
<td>Accelerating Machine Learning Research with MI-Prometheus</td>
</tr>
<tr>
<td>11:00</td>
<td>xpandas - python data containers for structured types and structured machine learning tasks</td>
</tr>
<tr>
<td>11:00</td>
<td>skpro: A domain-agnostic modelling framework for probabilistic supervised learning</td>
</tr>
<tr>
<td>11:00</td>
<td>McTorch, a manifold optimization library for deep learning</td>
</tr>
<tr>
<td>11:00</td>
<td>Machine Learning at Microsoft with ML.NET</td>
</tr>
<tr>
<td>11:00</td>
<td>Reproducing Machine Learning Research on Binder</td>
</tr>
<tr>
<td>11:00</td>
<td>Open Fabric for Deep Learning Models</td>
</tr>
<tr>
<td>11:00</td>
<td>Building, growing and sustaining ML communities</td>
</tr>
<tr>
<td>11:00</td>
<td>Towards Reproducible and Reusable Deep Learning Systems Research Artifacts</td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>11:00 AM</td>
<td><strong>PyLissom:</strong> A tool for modeling computational maps of the visual cortex in PyTorch Barijhoff</td>
</tr>
<tr>
<td>11:00 AM</td>
<td><strong>Salad:</strong> A Toolbox for Semi-supervised Adaptive Learning Schneider</td>
</tr>
<tr>
<td>11:00 AM</td>
<td><strong>MXFusion:</strong> A Modular Deep Probabilistic Programming Library Dai</td>
</tr>
<tr>
<td>11:00 AM</td>
<td><strong>Why every GBM speed benchmark is wrong</strong> Ershov</td>
</tr>
<tr>
<td>11:20 AM</td>
<td><strong>PyMC’s Big Adventure:</strong> Lessons Learned from the Development of Open-source Software for Probabilistic Programming Fonnesbeck</td>
</tr>
<tr>
<td>12:00 PM</td>
<td>Lunch (on your own)</td>
</tr>
<tr>
<td>02:00 PM</td>
<td>James Hensman, GPFlow</td>
</tr>
<tr>
<td>02:30 PM</td>
<td>Mara Averick, tidyverse</td>
</tr>
<tr>
<td>03:00 PM</td>
<td>Afternoon coffee break</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>Building workflows with Azure Pipelines</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>Interactive session: sustainability guidelines for MLOSS</td>
</tr>
<tr>
<td>05:00 PM</td>
<td><strong>Summary of guidelines</strong></td>
</tr>
<tr>
<td>05:30 PM</td>
<td><strong>Closing remarks</strong></td>
</tr>
</tbody>
</table>

Abstracts (24):


Sherpa is a free open-source hyperparameter optimization library for machine learning models. It is designed for problems with computationally expensive iterative function evaluations, such as the hyperparameter tuning of deep neural networks. With Sherpa, scientists can quickly optimize hyperparameters using a variety of powerful and interchangeable algorithms. Additionally, the framework makes it easy to implement custom algorithms. Sherpa can be run on either a single machine or a cluster via a grid scheduler with minimal configuration. Finally, an interactive dashboard enables users to view the progress of models as they are trained, cancel trials, and explore which hyperparameter combinations are working best. Sherpa empowers machine learning researchers by automating the tedious aspects of model tuning and providing an extensible framework for developing automated hyperparameter-tuning strategies. Its source code and documentation are available at https://github.com/LarsHH/sherpa and https://parameter-sherpa.readthedocs.io/, respectively. A demo can be found at https://youtu.be/L95sasMLgP4.

**Abstract 6: How to iNNvestigate neural network’s predictions! in Machine Learning Open Source Software 2018: Sustainable communities, 10:05 AM**
In recent years, deep neural networks have revolutionized many application domains of machine learning and are key components of many critical decision or predictive processes such as autonomous driving or medical image analysis. In these and many other domains it is crucial that specialists can understand and analyze actions and predictions, even of the most complex neural network architectures. Despite these arguments neural networks are often treated as black boxes and their complex internal workings as well as the basis for their predictions are not fully understood. In the attempt to alleviate this shortcoming many analysis methods were proposed, yet the lack of reference implementations often makes a systematic comparison between the methods a major effort. In this tutorial we present the library iNNvestigate which addresses the mentioned issue by providing a common interface and out-of-the-box implementation for many analysis methods. In the first part we will show how iNNvestigate enables users to easily compare such methods for neural networks. The second part will demonstrate how the underlying API abstracts a common operations in neural network analysis and show how users can use them for the development of (future) methods.


mlpack is an open-source C++ machine learning library with an emphasis on speed and flexibility. Since its original inception in 2007, it has grown to be a large project, implementing a wide variety of machine learning algorithms. This short paper describes the general design principles and discusses how the open-source community around the library functions.


SGDLibrary is a open source MATLAB library of stochastic optimization algorithms, which finds the minimizer of a function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ of the finite-sum form $\min f(w) = \frac{1}{n} \sum_i f_i(w)$. This problem has been studied intensively in recent years in the field of machine learning. One typical but promising approach for large-scale data is to use a stochastic optimization algorithm to solve the problem. SGDLibrary is a readable, flexible and extensible pure-MATLAB library of a collection of stochastic optimization algorithms. The purpose of the library is to provide researchers and implementers a comprehensive evaluation environment for the use of these algorithms on various machine learning problems.


Natural Language Processing is now dominated by deep learning models. Baseline (https://github.com/dpressel/baseline) is a library to facilitate reproducible research and fast model development for NLP with deep learning. It provides easily extensible implementations and abstractions for data loading, model development, training, hyper-parameter tuning, deployment to production, and a leaderboard to track experimental results.


An open-source DeepPavlov library is specifically tailored for development of dialogue systems. The library prioritizes efficiency, modularity, and extensibility with the goal to make it easier to create dialogue systems from scratch with limited data available. It supports modular as well as end-to-end
approaches to implementation of conversational agents. In DeepPavlov framework an agent consists of skills and every skill can be decomposed into components. Components are usually trainable models which solve typical NLP tasks such as intent classification, named entity recognition, sentiment analysis or pre-trained encoders for word or sentence level embeddings. Sequence-to-sequence chit-chat, question answering or task-oriented skills can be assembled from components provided in the library. ML models implemented in DeepPavlov have performance on par with current state of the art in the field.


Gravity is an open source, scalable, memory efficient modeling language for solving mathematical models in Optimization and Machine Learning. Gravity exploits structure to reduce function evaluation time including Jacobian and Hessian computation. Gravity is implemented in C++ with a flexible interface allowing the user to specify the numerical accuracy of variables and parameters. It is also designed to offer efficient iterative model solving, convexity detection, multithreading of subproblems, and lazy constraint generation. When compared to state-of-the-art modeling languages such as JuMP, Gravity is 5 times faster in terms of function evaluation and up to 60 times more memory efficient. Gravity enables researchers and practitioners to access state-of-the-art optimization solvers with a user-friendly interface for writing general mixed-integer nonlinear models.


This work presents Flow, an open-source Python library enabling the application of distributed reinforcement learning (RL) to mixed-autonomy traffic control tasks, in which autonomous vehicles, human-driven vehicles, and infrastructure interact. Flow integrates SUMO, a traffic microsimulator, with RLLib, a distributed reinforcement learning library. Using Flow, researchers can programatically design new traffic networks, specify experiment configurations, and apply control to autonomous vehicles and intelligent infrastructure. We have used Flow to train autonomous vehicles to improve traffic flow in a wide variety of representative traffic scenarios; the results and scripts to generate the networks and perform training have been integrated into Flow as benchmarks. Community use of Flow is central to its design; extensibility and clarity were considered throughout development. Flow is available for open-source use at flow-project.github.io and github.com/flow-project/flow.

Abstract 14: Tensorflex: Tensorflow bindings for the Elixir programming language in Machine Learning Open Source Software 2018: Sustainable communities, Chhabra 11:00 AM

Recently, with the advent of programmatic and practical machine learning tools, programmers have been able to successfully integrate applications for the web and the mobile with artificial intelligence capabilities. This trend has largely been possible because of major organizations and software companies releasing their machine learning frameworks to the public-- such as Tensorflow (Google), MXnet (Amazon) and PyTorch (Facebook). Python has been the de facto choice as the programming language for these frameworks because of it’s versatility and ease-of-use. In a similar vein, Elixir is the functional programming language equivalent of Python and Ruby, in that it combines the versatility and ease-of-use that Python and Ruby boast of, with functional programming paradigms and the Erlang VM’s fault
tolerance and robustness. However, despite these obvious advantages, Elixir, similar to other functional programming languages, does not provide developers with a machine learning toolset which is essential for equipping applications with deep learning and statistical inference features. To bridge this gap, we present Tensorflex, an open source framework that allows users to leverage pre-trained Tensorflow models (written in Python, C or C++) for Inference (generating predictions) in Elixir. Moreover, Tensorflex was written as part of a Google Summer of Code (2018) project by Anshuman Chhabra, and José Valim was the mentor for the same.


In my talk, I would like to share the experience and lessons learned in creating an open source machine learning software at CERN with a significant user base in high-energy physics, expanding the open-source initiative to the wider physics community and interactions with the open source community at large.

Abstract 16: Accelerating Machine Learning Research with MI-Prometheus in Machine Learning Open Source Software 2018: Sustainable communities, 11:00 AM

The paper introduces MI-Prometheus (Machine Intelligence - Prometheus), an open-source framework aiming at accelerating Machine Learning Research, by fostering the rapid development of diverse neural network-based models and facilitating their comparison. In its core, to accelerate the computations on their own, MI-Prometheus relies on PyTorch and extensively uses its mechanisms for the distribution of computations on CPUs/GPUs. The paper discusses the motivation of our work, the formulation of the requirements and presents the core concepts. We also briefly describe some of the problems and models currently available in the framework.

Abstract 17: xpandas - python data containers for structured types and structured machine learning tasks in Machine Learning Open Source Software 2018: Sustainable communities, Davydov 11:00 AM

Data scientific tasks with structured data types, e.g., arrays, images, time series, text records, are one of the major challenge areas of contemporary machine learning and AI research beyond the ``tabular'' situation - that is, data that fits into a single classical data frame, and learning tasks on it such as the classical supervised learning task where one column is to be predicted from others.\n
With xpandas, we present a python package that extends the pandas data container functionality to cope with arbitrary structured types (such as time series, images) at its column/slice elements, and which provides a transformer interface to scikit-learn's pipeline and composition workflows.\n
We intend xpandas to be the first building block towards scikit-learn like toolbox interfaces for advanced learning tasks such as supervised learning with structured features, structured output prediction, image segmentation, time series forecasting and event risk modelling.

Abstract 18: skpro: A domain-agnostic modelling framework for probabilistic supervised learning in Machine Learning Open Source Software 2018: Sustainable communities, Kiraly 11:00 AM

We present skpro, a Python framework for domain-agnostic probabilistic supervised learning. It features a scikit-learn-like general API that supports the implementation and fair comparison of both Bayesian and frequentist prediction strategies that produce conditional predictive distributions for each
individual test data point. The skpro interface also supports strategy optimization through hyper-parameter tuning, model composition, ensemble methods like bagging, and workflow automation. The package and documentation are released under the BSD-3 open source license and available at GitHub.com/alan-turing-institute/skpro.

Abstract 19: McTorch, a manifold optimization library for deep learning in Machine Learning Open Source Software 2018: Sustainable communities, Kunchukuttan 11:00 AM

In this paper, we introduce McTorch, a manifold optimization library for deep learning that extends PyTorch. It aims to lower the barrier for users wishing to use manifold constraints in deep learning applications, i.e., when the parameters are constrained to lie on a manifold. Such constraints include the popular orthogonality and rank constraints, and have been recently used in a number of applications in deep learning. McTorch follows PyTorch’s architecture and decouples manifold definitions and optimizers, i.e., once a new manifold is added it can be used with any existing optimizer and vice-versa. McTorch is available at https://github.com/mctorch.

Abstract 20: Machine Learning at Microsoft with ML.NET in Machine Learning Open Source Software 2018: Sustainable communities, 11:00 AM

Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place.

In this paper we introduce ML.NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications.


Binder is an open-source project that lets users share interactive, reproducible science. Binder’s goal is to allow researchers to create interactive versions of their code utilizing pre-existing workflows and minimal additional effort. It uses standard configuration files in software engineering to let researchers create interactive versions of code they have hosted on commonly-used platforms like GitHub. Binder’s underlying technology, BinderHub, is entirely open-source and utilizes entirely open-source tools. By leveraging tools such as Kubernetes and Docker, it manages the technical complexity around creating containers to capture a repository and its dependencies, generating user sessions, and providing public URLs to share the built images with others.

BinderHub combines two open-source projects within the Jupyter ecosystem: repo2docker and JupyterHub. repo2docker builds the Docker image of the git repository specified by the user, installs dependencies, and provides various front-ends to explore the image. JupyterHub then spawns and serves instances of these built images using Kubernetes to scale as needed. Because each of these pieces is open-source and uses popular tools in cloud orchestration, BinderHub can be deployed on a variety of cloud platforms, or even on your own hardware.

We will show the advantages of using a fabric of open source AI services and libraries, which have been launched by the AI labs in IBM Research, to train, harden and de-bias deep learning models. The motivation is that model building should not be monolithic. Algorithms, operations and pipelines to build and refine models should be modularized and reused as needed. The componentry presented meets these requirements and shares a philosophy of being framework- and vendor-agnostic, as well as modular and extensible. We focus on multiple aspects of machine learning that we describe in the following. To train models in the cloud in a distributed, framework-agnostic way, we use the Fabric for Deep Learning (FfDL). Adversarial attacks against models are mitigated using the Adversarial Robustness Toolbox (ART). We detect and remove bias using AI Fairness 360 (AIF360). Additionally, we publish to the open source developer community using the Model Asset Exchange (MAX). Overall, we demonstrate operations on deep learning models, and a set of developer APIs, that will help open source developers create robust and fair models for their applications, and for open source sharing. We will also call for community collaboration on these projects of open services and libraries, to democratize the open AI ecosystem.

Abstract 23: **Building, growing and sustaining ML communities in Machine Learning Open Source Software 2018: Sustainable communities**, Andrews 11:00 AM

While there are multiple research-based groups for the ML community around the world, the adoption of these skills by a broader base of developers will require new communities that reach beyond researchers to flourish at a large scale.

The Singapore TensorFlow & Deep Learning community is a group of over 3,000 people from different backgrounds and levels that is pushing the adoption of ML in South-East Asia, via monthly in-person meetings, guest talks, and special events.

In the proposed short talk, we will present some of the challenges, lessons learned and solutions found to building machine learning communities at scale.


This paper discusses results and insights from the 1st ReQuEST workshop, a collective effort to promote reusability, portability and reproducibility of deep learning research artifacts within the Architecture/PL/Systems communities. ReQuEST (Reproducible Quality-Efficient Systems Tournament) exploits the open-source Collective Knowledge framework (CK) to unify benchmarking, optimization, and co-design of deep learning systems implementations and exchange results via a live multi-objective scoreboard. Systems evaluated under ReQuEST are diverse and include an FPGA-based accelerator, optimized deep learning libraries for x86 and ARM systems, and distributed inference in Amazon Cloud and over a cluster of Raspberry Pis. We finally discuss limitations to our approach, and how we plan improve upon those limitations for the upcoming SysML artifact evaluation effort.

Despite impressive advancements in the last years, human vision is still much more robust than machine vision. This article presents PyLissom, a novel software library for the modeling of the cortex maps in the visual system. The software was implemented in PyTorch, a modern deep learning framework, and it allows full integration with other PyTorch modules. We hypothesize that PyLissom could act as a bridge between the neuroscience and machine learning communities, driving to advancements in both fields.


We introduce salad, an open source toolbox that provides a unified implementation of state-of-the-art methods for transfer learning, semi-supervised learning and domain adaptation. In the first release, we provide a framework for reproducing, extending and combining research results of the past years, including model architectures, loss functions and training algorithms. The toolbox along with first benchmark results and further resources is accessible at domainadaptation.org.


Modularity is a key feature of deep learning libraries but has not been fully exploited for probabilistic programming. We propose to improve modularity of probabilistic programming language by offering not only plain probabilistic distributions but also sophisticated probabilistic model such as Bayesian non-parametric models as fundamental building blocks. We demonstrate this idea by presenting a modular probabilistic programming language MXFusion, which includes a new type of re-usable building blocks, called probabilistic modules. A probabilistic module consists of a set of random variables with associated probabilistic distributions and dedicated inference methods. Under the framework of variational inference, the pre-specified inference methods of individual probabilistic modules can be transparently used for inference of the whole probabilistic model.

Abstract 28: Why every GBM speed benchmark is wrong in Machine Learning Open Source Software 2018: Sustainable communities, Ershov 11:00 AM

This pdf is a proposal for a small talk about speed benchmarks of gradient boosted decision libraries on MLoss 2018 NIPS workshop. There is no proper way to do speed benchmarks of boosting libraries today. Openly-available benchmarks are misleading, often contains mistakes. We want to show, what is wrong with the benchmarks and what everyone should keep in mind, if one want to compare different libraries in a meaningful way.


The PyMC project is a team of open source developers devoted to the development of software for applied Bayesian statistics and probabilistic machine learning. Broadly, our objective is to produce Python implementations of state-of-the-art methods that can be used by a wide range of non-expert analysts, thereby democratizing probabilistic programming and putting powerful Bayesian methods
in the hands of those who need them most: economists, astronomers, epidemiologists, ecologists, and more. Our current product, PyMC3, allows users to implement arbitrary probabilistic models using a high-level API that is analogous to specifying a model on a whiteboard.

**Machine Learning for the Developing World (ML4D): Achieving sustainable impact**

*Maria De-Arteaga, William Herlands, Amanda Coston*

**Sat Dec 08, 08:00 AM**

Global development experts are beginning to employ ML for diverse problems such as aiding rescue workers allocate resources during natural disasters, providing intelligent educational and healthcare services in regions with few human experts, and detecting corruption in government contracts. While ML represents a tremendous hope for accelerated development and societal change, it is often difficult to ensure that machine learning projects provide their promised benefit. The challenging reality in developing regions is that pilot projects disappear after a few years or do not have the same effect when expanded beyond the initial test site, and prototypes of novel methodologies are often never deployed.

At the center of this year’s program is how to achieve sustainable impact of Machine Learning for the Developing World (ML4D). This one-day workshop will bring together a diverse set of participants from across the globe to discuss major roadblocks and paths to action. Practitioners and development experts will discuss essential elements for ensuring successful deployment and maintenance of technology in developing regions. Additionally, the workshop will feature cutting edge research in areas such as transfer learning, unsupervised learning, and active learning that can help ensure long-term ML system viability. Attendees will learn about contextual components to ensure effective projects, development challenges that can benefit from machine learning solutions, and how these problems can inspire novel machine learning research.

The workshop will include invited and contributed talks, a poster session of accepted papers, panel discussions, and breakout sessions tailored to the workshop theme. We welcome paper submissions focussing on core ML methodology addressing ML4D roadblocks, application papers that showcase successful examples of ML4D, and research that evaluates the societal impact of ML.

**Schedule**

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:45 AM</td>
<td>Introductory remarks</td>
<td>Dubrawski</td>
</tr>
<tr>
<td>09:00 AM</td>
<td>Machine Learning for Development</td>
<td>Panicker</td>
</tr>
<tr>
<td>09:30 AM</td>
<td>Taking &quot;Big Data&quot; evidence to policy: Experiences from the Global South</td>
<td>Lokanathan</td>
</tr>
<tr>
<td>02:30 PM</td>
<td>Machine Learning for Development: Challenges, Opportunities, and a Roadmap</td>
<td>Neill</td>
</tr>
<tr>
<td>03:30 PM</td>
<td>Using ML to locate hidden graves in Mexico</td>
<td>Meltis Vejar</td>
</tr>
<tr>
<td>04:00 PM</td>
<td>Real-Time Measures of Poverty and Vulnerability</td>
<td>Blumenstock</td>
</tr>
</tbody>
</table>

Abstracts (2):
Researchers from across the social and computer sciences are increasingly using machine learning to study and address global development challenges, and an exciting new field of "Machine Learning for the Developing World", or "Machine Learning for Development" (ML4D) is beginning to emerge. In recent work (De Arteaga et al., ACM TMIS, 2018), we synthesize the prominent literature in the field and attempt to answer the key questions, "What is ML4D, and where is the field headed?". Based on the literature, we identify a set of best practices for ensuring that ML4D projects are relevant to the advancement of development objectives. Given the strong alignment between development needs and ML approaches, we lay out a roadmap detailing three technical stages where ML4D can play an essential role and meaningfully contribute to global development. Perhaps the most important aspect of ML4D is that development challenges are treated as research questions, not as roadblocks: we believe that the ML4D field can flourish in the coming years by using the unique challenges of the developing world as opportunities to inspire novel and impactful research across multiple machine learning disciplines. This talk is based on joint work with Maria de Arteaga, William Herlands, and Artur Dubrawski.

Abstract 6: Real-Time Measures of Poverty and Vulnerability in Machine Learning for the Developing World (ML4D): Achieving sustainable impact, Blumenstock 04:00 PM

In wealthy nations, novel sources of data from the internet and social media are enabling new approaches for social science research and public policy. In developing countries, by contrast, fewer sources of such data exist, and researchers and policymakers often rely on data that are unreliable or out of date. Here, we develop a new approach for measuring the dynamic welfare of individuals remotely by analyzing their logs of mobile phone use. We calibrate our approach with an original high-frequency panel survey of 1,200 Afghans, and an experimental protocol that randomized the timing and value of an unconditional cash transfer to each respondent. We show that mobile phone metadata, obtained with the respondent's consent from Afghanistan's largest mobile phone company, can be used to estimate the social and economic well-being of respondents, including the onset of positive and negative shocks. We discuss the potential for such methods to transform current practices of policy monitoring and impact evaluation.