Timezone: »

 
Teaching Multiple Tasks to an RL Agent using LTL
Rodrigo Toro Icarte · Sheila McIlraith

Sat Dec 08 09:15 AM -- 09:30 AM (PST) @

This paper examines the problem of how to teach multiple tasks to a Reinforcement Learning (RL) agent. To this end, we use Linear Temporal Logic (LTL) as a language for specifying multiple tasks in a manner that supports the composition of learned skills. We also propose a novel algorithm that exploits LTL progression and off-policy RL to speed up learning without compromising convergence guarantees, and show that our method outperforms the state-of-the-art.

Author Information

Rodrigo Toro Icarte (University of Toronto)

I am a Ph.D. student in the knowledge representation group at the University of Toronto. I am also a member of the Canadian Artificial Intelligence Association and the Vector Institute. My supervisor is Sheila McIlraith. I did my undergrad in Computer Engineering and MSc in Computer Science at Pontificia Universidad Catolica de Chile (PUC). My master's degree was co-supervised by Alvaro Soto and Jorge Baier. While I was at PUC, I taught the undergraduate course "Introduction to Computer Programming Languages."

Sheila McIlraith (University of Toronto)

More from the Same Authors

  • 2020 : Poster #6 »
    Sheila McIlraith
  • 2021 : Avoiding Negative Side Effects by Considering Others »
    Parand Alizadeh Alamdari · Toryn Klassen · Rodrigo Toro Icarte · Sheila McIlraith
  • 2021 : BLAST: Latent Dynamics Models from Bootstrapping »
    Keiran Paster · Lev McKinney · Sheila McIlraith · Jimmy Ba
  • 2022 : Return Augmentation gives Supervised RL Temporal Compositionality »
    Keiran Paster · Silviu Pitis · Sheila McIlraith · Jimmy Ba
  • 2022 : Noisy Symbolic Abstractions for Deep RL: A case study with Reward Machines »
    Andrew Li · Zizhao Chen · Pashootan Vaezipoor · Toryn Klassen · Rodrigo Toro Icarte · Sheila McIlraith
  • 2022 : Return Augmentation gives Supervised RL Temporal Compositionality »
    Keiran Paster · Silviu Pitis · Sheila McIlraith · Jimmy Ba
  • 2022 : Epistemic Side Effects & Avoiding Them (Sometimes) »
    Toryn Klassen · Parand Alizadeh Alamdari · Sheila McIlraith
  • 2022 Poster: Learning to Follow Instructions in Text-Based Games »
    Mathieu Tuli · Andrew Li · Pashootan Vaezipoor · Toryn Klassen · Scott Sanner · Sheila McIlraith
  • 2022 Poster: You Can’t Count on Luck: Why Decision Transformers and RvS Fail in Stochastic Environments »
    Keiran Paster · Sheila McIlraith · Jimmy Ba
  • 2020 : Contributed Talk: Planning from Pixels using Inverse Dynamics Models »
    Keiran Paster · Sheila McIlraith · Jimmy Ba
  • 2019 : Poster and Coffee Break 2 »
    Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
  • 2019 : Poster Spotlight 2 »
    Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 Poster: Learning Reward Machines for Partially Observable Reinforcement Learning »
    Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Sheila McIlraith
  • 2019 Spotlight: Learning Reward Machines for Partially Observable Reinforcement Learning »
    Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Sheila McIlraith
  • 2018 : Poster Session »
    Carl Trimbach · Mennatullah Siam · Rodrigo Toro Icarte · Zhongtian Dai · Sheila McIlraith · Matthew Rahtz · Robert Sheline · Christopher MacLellan · Carolin Lawrence · Stefan Riezler · Dylan Hadfield-Menell · Fang-I Hsiao