Timezone: »
Author Information
Aniruddh Raghu (Massachusetts Institute of Technology)
Daniel Jarrett (University of Oxford)
Kathleen Lewis (MIT)
Elias Chaibub Neto (Sage Bionetworks)
Nicholas Mastronarde (University at Buffalo)
Nick Mastronarde is an Associate Professor in the Department of Electrical Engineering at the University at Buffalo. He received his Ph.D. degree in Electrical Engineering at the University of California, Los Angeles (UCLA) in 2011 and his B.S. and M.S. degrees in Electrical Engineering from the University of California, Davis in 2005 (Highest Honors, Department Citation) and 2006, respectively. He has been the recipient of several awards and honors including a first year department fellowship through the Electrical Engineering department at UCLA, the Dissertation Year Fellowship through the Graduate Division at UCLA, and the Dimitris N. Chorafas Foundation Award for 2011. He has spent four summers (2013, 2015, 2016, 2018) as a faculty fellow at the US Air Force Research Laboratory (AFRL) Information Directorate in Rome, NY. In the summer of 2010, he was a graduate intern at IBM Research Watson Lab in the Exploratory Stream Analytics group where he developed learning algorithms for discovering anomalies in massive volumes of streaming data. In the summer of 2007, he was a graduate student intern at Intel Corporation in the Graphics Architecture Team where he developed and patented an algorithm enabling the selective use of fractional and bidirectional video motion estimation in an H.264/AVC encoder. Prof. Mastronarde's research interests are in the areas of resource allocation and scheduling in wireless networks and systems, UAV networks, 4G/5G networks, dynamic power management, cross-layer design and optimization, Markov decision processes (MDPs), and reinforcement learning.
Shazia Akbar (Sunnybrook Research Institute)
Chun-Hung Chao (National Tsing Hua University)
Henghui Zhu (Boston University)
Seth Stafford (ML/NLP Engineering at ServiceNow)
Math PhD in stochastic processes from Cornell, held an NSF post-doctoral fellowship at MIT. Built many enterprise apps, now applying ML/NLP to solve business problems at scale. Side interest in Finance/trading signals (passed all 3 CFA exams).
Luna Zhang (BigBear, Inc.)
Jen-Tang Lu (MGH & BWH Center for Clinical Data Science)
Changhee Lee (University of California, Los Angeles)
Adityanarayanan Radhakrishnan (MIT)
Fabian Falck (Carnegie Mellon University)
Liyue Shen (Stanford University)
Daniel Neil (BenevolentAI)
Daniel Neil is a machine learning researcher who is passionate about bringing transformative technologies to the world. After a foundation in biomedical computation at Stanford, Daniel worked as a technology consultant with Accenture in Silicon Valley before obtaining a Ph.D. in Switzerland at ETH Zurich in machine learning algorithms and neuroscience. At BenevolentAI, he helped to build the New York office's research team and direction. He is the author of more than three dozen publications and patents in research areas spanning biologically-motivated machine learning, methods development, and knowledge graph completion. At BenevolentAI Dan focuses on integrating research teams across information extraction, precision medicine, gene prioritization, and chemistry optimization to deploy machine learning algorithms that improve each step of the drug discovery process.
Yusuf Roohani (GSK)
Aparna Balagopalan (University of Toronto)
Brett Marinelli (Mount Sinai)
Hagai Rossman (Weizmann Institute of Science)
Sven Giesselbach (Fraunhofer IAIS)
Jose Javier Gonzalez Ortiz (MIT)
Edward De Brouwer (KU Leuven)
Byung-Hoon Kim (Korea Advanced Institute of Science and Technology (KAIST))
Byung-Hoon Kim
Rafid Mahmood (University of Toronto)
Tzu Ming Hsu (MIT)
Antonio Ribeiro (UFMG / Uppsala university)
Rumi Chunara (New York University)
Agni Orfanoudaki (Massachusetts Institute of Technology)
Kristen Severson (IBM Research)
Mingjie Mai (University of Toronto)
Sonali Parbhoo (University of Basel)
Albert Haque (Stanford University)
Viraj Prabhu (Georgia Tech)

I am a fourth year CS Ph.D. student at Georgia Tech, advised by Judy Hoffman. My research interests are in developing data-efficient and reliable computer vision systems that can be deployed in the real world. Specifically, I am interested in sample-efficient learning (particularly few-shot and active learning), adaptation across visual tasks and domains, and reliable and calibrated uncertainty estimation from deep neural networks.
Di Jin (MIT)
Alena Harley (Human Longevity Inc.)
Geoffroy Dubourg-Felonneau (Cambridge cancer genomics)
Xiaodan Hu (University of Waterloo)
Maithra Raghu (Cornell University and Google Brain)
Jonathan Warrell (Yale University)
Nelson Johansen (University of California, Davis)
Wenyuan Li (UCLA)
Marko Järvenpää (Aalto University)
Satya Narayan Shukla (University of Massachusetts Amherst)
Sarah Tan (Cornell University / UCSF)
Research scientist at Facebook working on causal inference and interpretability
Vincent Fortuin (ETH Zürich)
Research Fellow at St John's College, University of Cambridge. Incoming group leader at Helmholtz AI in Munich.
Beau Norgeot (UCSF)
Yi-Te Hsu (Academia Sinica)
Joel H Saltz (Stony Brook University)
Veronica Tozzo (University of Genoa)
Andrew Miller (Columbia)
Guillaume Ausset (Télécom Paristech)
Azin Asgarian (University of Toronto)
Francesco Paolo Casale (Microsoft Research)
Antoine Neuraz (APHP / INSERM / LIMSI)
Bhanu Pratap Singh Rawat (UMass Amherst)
Turgay Ayer (Georgia Institute of Technology)
Turgay Ayer is the George Family Foundation Early Career Professor in H. Milton Stewart School of Industrial and Systems Engineering and is the Director of Business Intelligence and Healthcare Analytics at the Center for Health and Humanitarian Systems at at Georgia Institute of Technology. In addition, Dr. Ayer has a courtesy appointment at Emory Medical School. His research focuses on socially responsible operations and practice-focused research, with a particular emphasis on healthcare analytics. His research papers have been published in top tier management, engineering and medical journals, and covered by popular media outlets, including the Wall Street Journal, Washington Post, US News, and NPR. Dr. Ayer has received over $2 million grant funding and several awards for his work, including an NSF CAREER Award (2015), first place in the MSOM Best Practice-Based Research Competition (2017), INFORMS Franz Edelman Laureate Award (2017), and Society for Medical Decision Making Lee Lusted Award (2009). Ayer serves an associate editor for Operations Research and MSOM (Special Issue), and is a past president of the INFORMS Health Application Society. He received a B.S. in industrial engineering from Sabanci University in Istanbul, Turkey, and his M.S. and Ph.D. degrees in industrial and Systems Engineering from the University of Wisconsin - Madison.
Xinyu Li (Carnegie Mellon University)
Mehul Motani (National University of Singapore)
Mehul Motani received the B.E. degree from Cooper Union, New York, NY, the M.S. degree from Syracuse University, Syracuse, NY, and the Ph.D. degree from Cornell University, Ithaca, NY, all in Electrical and Computer Engineering. Dr. Motani is currently an Associate Professor in the Electrical and Computer Engineering Department at the National University of Singapore (NUS) and a Visiting Research Collaborator at Princeton University. Previously, he was a Visiting Fellow at Princeton University. He was also a Research Scientist at the Institute for Infocomm Research in Singapore, for three years, and a Systems Engineer at Lockheed Martin in Syracuse, NY for over four years. His research interests include information theory, machine learning, wireless and sensor networks, and energy harvesting communications. Dr. Motani was the recipient of the Intel Foundation Fellowship for his Ph.D. research, the NUS Annual Teaching Excellence Award, the NUS Faculty of Engineering Innovative Teaching Award, and the NUS Faculty of Engineering Teaching Honours List Award. He actively participates in the Institute of Electrical and Electronics Engineers (IEEE) and the Association for Computing Machinery (ACM). He is a Fellow of the IEEE and has served as the Secretary of the IEEE Information Theory Society Board of Governors. He has served as an Associate Editor for both the IEEE Transactions on Information Theory and the IEEE Transactions on Communications. He has also served on the Organizing and Technical Program Committees of numerous IEEE and ACM conferences.
Nathaniel Braman (Case Western Reserve University)
Laetitia M Shao (Stanford University)
Adrian Dalca (MIT)
Hyunkwang Lee (Harvard)
Emma Pierson (Stanford)
Sandesh Ghimire (Rochester Institute of Technology)
Yuji Kawai (Osaka University)
Owen Lahav (University of Oxford)
Anna Goldenberg (SickKids/University of Toronto)
Dr Goldenberg is a Senior Scientist in Genetics and Genome Biology program at SickKids Research Institute, recently appointed as the first Varma Family Chair in Biomedical Informatics and Artificial Intelligence. She is also an Associate Professor in the Department of Computer Science at the University of Toronto, faculty member and an Associate Research Director, Health at Vector Institute and a fellow at the Canadian Institute for Advanced Research (CIFAR), Child and Brain Development group. Dr Goldenberg trained in machine learning at Carnegie Mellon University, with a post-doctoral focus in computational biology and medicine. The current focus of her lab is on developing machine learning methods that capture heterogeneity and identify disease mechanisms in complex human diseases as well as developing risk prediction and early warning clinical systems. Dr Goldenberg is a recipient of the Early Researcher Award from the Ministry of Research and Innovation. She is strongly committed to creating responsible AI to benefit patients across a variety of conditions.
Denny Wu (University of Toronto & Vector Institute)
Pavitra Krishnaswamy (Institute for Infocomm Research)
Colin Pawlowski (MIT)
Arijit Ukil (Tata Consultancy Services, Kolkata, India)
Yuhui Zhang (Tsinghua University)
More from the Same Authors
-
2020 : Learning MRI contrast agnostic registration »
Malte Hoffmann · Adrian Dalca -
2021 : Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development »
Kexin Huang · Tianfan Fu · Wenhao Gao · Yue Zhao · Yusuf Roohani · Jure Leskovec · Connor Coley · Cao Xiao · Jimeng Sun · Marinka Zitnik -
2021 Spotlight: Repulsive Deep Ensembles are Bayesian »
Francesco D'Angelo · Vincent Fortuin -
2021 Spotlight: Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space »
Sandesh Ghimire · Aria Masoomi · Jennifer Dy -
2021 : The Medkit-Learn(ing) Environment: Medical Decision Modelling through Simulation »
Alex Chan · Ioana Bica · Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2021 : Predicting Sufficiency for Hemorrhage Resuscitation Using Non-invasive Physiological Data without Reference to Personal Baselines »
Xinyu Li · Michael Pinsky · Artur Dubrawski -
2021 : PCA Subspaces Are Not Always Optimal for Bayesian Learning »
Alexandre Bense · Amir Joudaki · Tim G. J. Rudner · Vincent Fortuin -
2021 : Learning Invariant Representations with Missing Data »
Mark Goldstein · Adriel Saporta · Aahlad Puli · Rajesh Ranganath · Andrew Miller -
2021 : Deep Classifiers with Label Noise Modeling and Distance Awareness »
Vincent Fortuin · Mark Collier · Florian Wenzel · James Allingham · Jeremiah Liu · Dustin Tran · Balaji Lakshminarayanan · Jesse Berent · Rodolphe Jenatton · Effrosyni Kokiopoulou -
2021 : Pathologies in Priors and Inference for Bayesian Transformers »
Tristan Cinquin · Alexander Immer · Max Horn · Vincent Fortuin -
2022 Poster: Optimizing Data Collection for Machine Learning »
Rafid Mahmood · James Lucas · Jose M. Alvarez · Sanja Fidler · Marc Law -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Using Hippocampal Replay to Consolidate Experiences in Memory-Augmented Reinforcement Learning »
Chong Min John Tan · Mehul Motani -
2022 : Feature Restricted Group Dropout for Robust Electronic Health Record Predictions »
Bret Nestor · Anna Goldenberg · Marzyeh Ghassemi -
2022 : Augmentation Consistency-guided Self-training for Source-free Domain Adaptive Semantic Segmentation »
Viraj Prabhu · Shivam Khare · Deeksha Kartik · Judy Hoffman -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2022 : UniverSeg: Universal Medical Image Segmentation »
Victor Butoi · Jose Javier Gonzalez Ortiz · Tianyu Ma · John Guttag · Mert Sabuncu · Adrian Dalca -
2022 : A Hybrid Classifier with Diverse Features Selected from Feature Sets Extracted by Machine Learning Models for Image Classification »
Luna Zhang -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Contrast Invariant Feature Representations for Medical Image Analysis »
Yue Zhi, Russ Chua · Adrian Dalca -
2022 : Region-of-Interest Adaptive Acquisition for Accelerated MRI »
Zihui Wu · Tianwei Yin · Adrian Dalca · Katherine Bouman -
2022 : Volume-based Performance not Guaranteed by Promising Patch-based Results in Medical Imaging »
Abhishek Moturu · Sayali Joshi · Andrea Doria · Anna Goldenberg -
2023 Poster: Error Discovery By Clustering Influence Embeddings »
Fulton Wang · Julius Adebayo · Sarah Tan · Diego Garcia-Olano · Narine Kokhlikyan -
2023 Poster: Risk-Averse Active Sensing for Timely Outcome Prediction under Cost Pressure »
Yuchao Qin · Mihaela van der Schaar · Changhee Lee -
2023 Poster: Scale-Space Hypernetworks for Efficient Biomedical Image Analysis »
Jose Javier Gonzalez Ortiz · John Guttag · Adrian Dalca -
2023 Poster: LANCE: Stress-testing Visual Models by Generating Language-guided Counterfactual Images »
Viraj Prabhu · Sriram Yenamandra · Prithvijit Chattopadhyay · Judy Hoffman -
2023 Poster: Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks »
Micah Goldblum · Hossein Souri · Renkun Ni · Manli Shu · Viraj Prabhu · Gowthami Somepalli · Prithvijit Chattopadhyay · Adrien Bardes · Mark Ibrahim · Judy Hoffman · Rama Chellappa · Andrew Wilson · Tom Goldstein -
2023 Workshop: Deep Generative Models for Health »
Emanuele Palumbo · Laura Manduchi · Sonia Laguna · Melanie F. Pradier · Vincent Fortuin · Stephan Mandt · Julia Vogt -
2022 : Dissecting In-the-Wild Stress from Multimodal Sensor Data »
Sujay Nagaraj · Thomas Hartvigsen · Adrian Boch · Luca Foschini · Marzyeh Ghassemi · Sarah Goodday · Stephen Friend · Anna Goldenberg -
2022 : At the Intersection of Conceptual Art and Deep Learning: The End of Signature »
Kathleen Lewis · Divya Shanmugam · Jose Javier Gonzalez Ortiz · Agnieszka Kurant · John Guttag -
2022 : Towards Credible Human Evaluation of Open-Domain Dialog Systems Using Interactive Setup »
Sijia Liu · Patrick Lange · Behnam Hedayatnia · Alexandros Papangelis · Di Jin · Andrew Wirth · Yang Liu · Dilek Hakkani-Tur -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 : Contrastive Pre-Training for Multimodal Medical Time Series »
Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz -
2022 : Continual Learning on Auxiliary tasks via Replayed Experiences: CLARE »
Bohdan Naida · Addison Weatherhead · Sana Tonekaboni · Anna Goldenberg -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: Deep Counterfactual Estimation with Categorical Background Variables »
Edward De Brouwer -
2022 Poster: Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations »
Alexander Immer · Tycho van der Ouderaa · Gunnar Rätsch · Vincent Fortuin · Mark van der Wilk -
2022 Poster: Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures »
Emmanuel Abbe · Samy Bengio · Elisabetta Cornacchia · Jon Kleinberg · Aryo Lotfi · Maithra Raghu · Chiyuan Zhang -
2022 Poster: Adapting Self-Supervised Vision Transformers by Probing Attention-Conditioned Masking Consistency »
Viraj Prabhu · Sriram Yenamandra · Aaditya Singh · Judy Hoffman -
2021 : Panel II: Machine decisions »
Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen -
2021 : ML in urban planning panel »
Rumi Chunara -
2021 Workshop: Machine Learning in Public Health »
Rumi Chunara · Daniel Lizotte · Laura Rosella · Esra Suel · Marie Charpignon -
2021 : Achieving Low Complexity Neural Decoders via Iterative Pruning »
Vikrant Malik · Rohan Ghosh · Mehul Motani -
2021 : Invited Talk: Generalizability, robustness and fairness in machine learning risk prediction models »
Rumi Chunara -
2021 Poster: Invariant Causal Imitation Learning for Generalizable Policies »
Ioana Bica · Daniel Jarrett · Mihaela van der Schaar -
2021 Poster: Time-series Generation by Contrastive Imitation »
Daniel Jarrett · Ioana Bica · Mihaela van der Schaar -
2021 Poster: Meta-learning to Improve Pre-training »
Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud -
2021 Poster: Universal Graph Convolutional Networks »
Di Jin · Zhizhi Yu · Cuiying Huo · Rui Wang · Xiao Wang · Dongxiao He · Jiawei Han -
2021 Poster: Closing the loop in medical decision support by understanding clinical decision-making: A case study on organ transplantation »
Yuchao Qin · Fergus Imrie · Alihan Hüyük · Daniel Jarrett · alexander gimson · Mihaela van der Schaar -
2021 Poster: Network-to-Network Regularization: Enforcing Occam's Razor to Improve Generalization »
Rohan Ghosh · Mehul Motani -
2021 Poster: Repulsive Deep Ensembles are Bayesian »
Francesco D'Angelo · Vincent Fortuin -
2021 Poster: Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space »
Sandesh Ghimire · Aria Masoomi · Jennifer Dy -
2021 Poster: SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data »
Alicia Curth · Changhee Lee · Mihaela van der Schaar -
2021 Poster: Do Vision Transformers See Like Convolutional Neural Networks? »
Maithra Raghu · Thomas Unterthiner · Simon Kornblith · Chiyuan Zhang · Alexey Dosovitskiy -
2020 : Closing remarks »
Rumi Chunara -
2020 : Vincent Fortuin---Bayesian Neural Network Priors Revisited »
Vincent Fortuin -
2020 : Public Health in Practice Panel: Matthew Biggerstaff (CDC), Brian DeRenzi (Dimagi), Roni Rosenfeld (CMU), Zainab Samad (AKU) »
Rumi Chunara -
2020 Workshop: MLPH: Machine Learning in Public Health »
Rumi Chunara · Abraham Flaxman · Daniel Lizotte · Chirag Patel · Laura Rosella -
2020 : On Principles, Models and Methods for Learning from Irregularly Sampled Time Series... »
Satya Narayan Shukla -
2020 : Poster Session 3 (gather.town) »
Denny Wu · Chengrun Yang · Tolga Ergen · sanae lotfi · Charles Guille-Escuret · Boris Ginsburg · Hanbake Lyu · Cong Xie · David Newton · Debraj Basu · Yewen Wang · James Lucas · MAOJIA LI · Lijun Ding · Jose Javier Gonzalez Ortiz · Reyhane Askari Hemmat · Zhiqi Bu · Neal Lawton · Kiran Thekumparampil · Jiaming Liang · Lindon Roberts · Jingyi Zhu · Dongruo Zhou -
2020 Workshop: Machine Learning for Health (ML4H): Advancing Healthcare for All »
Stephanie Hyland · Allen Schmaltz · Charles Onu · Ehi Nosakhare · Emily Alsentzer · Irene Y Chen · Matthew McDermott · Subhrajit Roy · Benjamin Akera · Dani Kiyasseh · Fabian Falck · Griffin Adams · Ioana Bica · Oliver J Bear Don't Walk IV · Suproteem Sarkar · Stephen Pfohl · Andrew Beam · Brett Beaulieu-Jones · Danielle Belgrave · Tristan Naumann -
2020 Poster: What went wrong and when? Instance-wise feature importance for time-series black-box models »
Sana Tonekaboni · Shalmali Joshi · Kieran Campbell · David Duvenaud · Anna Goldenberg -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 : Coffee/Poster session 2 »
Xingyou Song · Puneet Mangla · David Salinas · Zhenxun Zhuang · Leo Feng · Shell Xu Hu · Raul Puri · Wesley Maddox · Aniruddh Raghu · Prudencio Tossou · Mingzhang Yin · Ishita Dasgupta · Kangwook Lee · Ferran Alet · Zhen Xu · Jörg Franke · James Harrison · Jonathan Warrell · Guneet Dhillon · Arber Zela · Xin Qiu · Julien Niklas Siems · Russell Mendonca · Louis Schlessinger · Jeffrey Li · Georgiana Manolache · Debojyoti Dutta · Lucas Glass · Abhishek Singh · Gregor Koehler -
2019 : Anna Goldenberg Talk »
Anna Goldenberg -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 : Spotlight Paper Talks »
Arnav Kapur · Maithra Raghu · Xinyu Li -
2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott -
2019 Poster: Transfusion: Understanding Transfer Learning for Medical Imaging »
Maithra Raghu · Chiyuan Zhang · Jon Kleinberg · Samy Bengio -
2019 Poster: GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series »
Edward De Brouwer · Jaak Simm · Adam Arany · Yves Moreau -
2019 Poster: Learning Conditional Deformable Templates with Convolutional Networks »
Adrian Dalca · Marianne Rakic · John Guttag · Mert Sabuncu -
2019 Tutorial: Machine Learning for Computational Biology and Health »
Anna Goldenberg · Barbara Engelhardt -
2018 : Oral session III »
Nathaniel Braman · Adrian Tousignant · Matthew Ng -
2018 : Poster session »
David Zeng · Marzieh S. Tahaei · Shuai Chen · Felix Meister · Meet Shah · Anant Gupta · Ajil Jalal · Eirini Arvaniti · David Zimmerer · Konstantinos Kamnitsas · Pedro Ballester · Nathaniel Braman · Udaya Kumar · Sil C. van de Leemput · Junaid Qadir · Hoel Kervadec · Mohamed Akrout · Adrian Tousignant · Matthew Ng · Raghav Mehta · Miguel Monteiro · Sumana Basu · Jonas Adler · Adrian Dalca · Jizong Peng · Sungyeob Han · Xiaoxiao Li · Karthik Gopinath · Joseph Cheng · Bogdan Georgescu · Kha Gia Quach · Karthik Sarma · David Van Veen -
2018 : Oral session II »
Sil C. van de Leemput · Adrian Dalca · Karthik Gopinath -
2018 : Lunch »
Hong Yu · Bhanu Pratap Singh Rawat · Arijit Ukil · Waheeda Saib · Jekaterina Novikova · John Hughes · Yuhui Zhang · Rahul V · Mi Jung Kim · Babak Taati · Hariharan Ravishankar · Harry Clifford · Hirofumi Kobayashi · Babak Taati · Keyang Xu · Yen-Chi Cheng · Timothy Cannings · Jayashree Kalpathy-Cramer · Jayashree Kalpathy-Cramer · Parinaz Sobhani · Kimis Perros · Wei-Hung Weng · Yordan Raykov · Lars Lorch · Mengqi Jin · Xue Teng · Michael Ferlaino · Marek Rei · Cédric Beaulac · Aman Verma · Sebastian Keller · Edmond Cunningham · Luc Evers · Victor Rodriguez · Vipul Satone · Dianbo Liu · Angeline Yasodhara · Geoff Tison · Ligin Solamen · Bryan He · Rahul Ladhania · Yipeng Shi · Md Nafiz Hamid · Pouria Mashouri · Woochan Hwang · Sejin Park · Xu Chen · Rachneet Kaur · Davis Blalock · Holly Wiberg · Parminder Bhatia · Kezi Yu · RUMENG LI · Jun Sakuma · Charles Ding · Aaron Babier · Yong Cai · A Pratap · Luke O'Connor · Allen Nie · Martin Kang · Ian Covert · Xun Wang · Zelun Luo · Serena Yeung · William Boag · Kazuki Tachikawa · Mary Saltz · Owen Lahav · Edward Lee · Eric Teasley · Michael Kamp · Nirmesh Patel · Vishwali Mhasawade · Maxim Samarin · Ryo Uchimido · Farzad Khalvati · Francisco Cruz · Laura Symul · Zaid Nabulsi · Mads Mihailescu · Rosalind Picard -
2018 : Poster session: Contributed papers »
Michael Cvitkovic · Arijit Patra · Yunpeng Li · RAHMAN BANYA SAFF SANYA · Guanghua Chi · Benjamin Huynh · Hamed Alemohammad · Simón Ramírez Amaya · Nazmus Saquib · Jade Abbott · Teo de Campos · Viraj Prabhu · Alvaro Riascos · Hafte Abera · praney dubey · Tanushyam Chattopadhyay · Hsiang Hsu · Mayank Jain · Kartikeya Bhardwaj · Gabriel Cadamuro · Bradley Gram-Hansen · Georg Dorffner -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 : Spotlight talks (session 3) »
Farzaneh Mahdisoltani · Frederik Kratzert · SUBBAREDDY OOTA · Mehul Motani · Tryambak Gangopadhyay · Sathwik Tejaswi Madhusudhan · Marc Rußwurm · Mahta Mousavi · Mihir Jain -
2018 Poster: Gaussian Process Prior Variational Autoencoders »
Francesco Paolo Casale · Adrian Dalca · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi -
2018 Poster: Representation Balancing MDPs for Off-policy Policy Evaluation »
Yao Liu · Omer Gottesman · Aniruddh Raghu · Matthieu Komorowski · Aldo Faisal · Finale Doshi-Velez · Emma Brunskill -
2018 Poster: Insights on representational similarity in neural networks with canonical correlation »
Ari Morcos · Maithra Raghu · Samy Bengio -
2018 Poster: 3D-Aware Scene Manipulation via Inverse Graphics »
Shunyu Yao · Tzu Ming Hsu · Jun-Yan Zhu · Jiajun Wu · Antonio Torralba · Bill Freeman · Josh Tenenbaum -
2017 Workshop: Deep Learning: Bridging Theory and Practice »
Sanjeev Arora · Maithra Raghu · Russ Salakhutdinov · Ludwig Schmidt · Oriol Vinyals -
2017 : Contributed talk: Taylor Residual Estimators via Automatic Differentiation »
Andrew Miller -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 : Poster Session »
Shunsuke Horii · Heejin Jeong · Tobias Schwedes · Qing He · Ben Calderhead · Ertunc Erdil · Jaan Altosaar · Patrick Muchmore · Rajiv Khanna · Ian Gemp · Pengfei Zhang · Yuan Zhou · Chris Cremer · Maria DeYoreo · Alexander Terenin · Brendan McVeigh · Rachit Singh · Yaodong Yang · Erik Bodin · Trefor Evans · Henry Chai · Shandian Zhe · Jeffrey Ling · Vincent ADAM · Lars Maaløe · Andrew Miller · Ari Pakman · Josip Djolonga · Hong Ge -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 : Contributed talk: Beyond Sparsity: Tree-based Regularization of Deep Models for Interpretability »
Mike Wu · Sonali Parbhoo · Finale Doshi-Velez -
2017 : Poster Spotlights »
Francesco Locatello · Ari Pakman · Da Tang · Thomas Rainforth · Zalan Borsos · Marko Järvenpää · Eric Nalisnick · Gabriele Abbati · XIAOYU LU · Jonathan Huggins · Rachit Singh · Rui Luo -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Reducing Reparameterization Gradient Variance »
Andrew Miller · Nick Foti · Alexander D'Amour · Ryan Adams -
2017 Poster: SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability »
Maithra Raghu · Justin Gilmer · Jason Yosinski · Jascha Sohl-Dickstein -
2016 Poster: Exponential expressivity in deep neural networks through transient chaos »
Ben Poole · Subhaneil Lahiri · Maithra Raghu · Jascha Sohl-Dickstein · Surya Ganguli -
2016 Poster: Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences »
Daniel Neil · Michael Pfeiffer · Shih-Chii Liu -
2016 Oral: Phased LSTM: Accelerating Recurrent Network Training for Long or Event-based Sequences »
Daniel Neil · Michael Pfeiffer · Shih-Chii Liu -
2015 Workshop: Machine Learning in Computational Biology »
Nicolo Fusi · Anna Goldenberg · Sara Mostafavi · Gerald Quon · Oliver Stegle -
2015 Poster: A Gaussian Process Model of Quasar Spectral Energy Distributions »
Andrew Miller · Albert Wu · Jeffrey Regier · Jon McAuliffe · Dustin Lang · Mr. Prabhat · David Schlegel · Ryan Adams -
2014 Workshop: Machine Learning in Computational Biology »
Oliver Stegle · Sara Mostafavi · Anna Goldenberg · Su-In Lee · Michael Leung · Anshul Kundaje · Mark B Gerstein · Martin Renqiang Min · Hannes Bretschneider · Francesco Paolo Casale · Loïc Schwaller · Amit G Deshwar · Benjamin A Logsdon · Yuanyang Zhang · Ali Punjani · Derek C Aguiar · Samuel Kaski -
2013 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Sara Mostafavi · Oliver Stegle -
2012 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Anna Goldenberg · Christina Leslie -
2011 Workshop: Machine Learning in Computational Biology »
Jean-Philippe Vert · Gunnar Rätsch · Yanjun Qi · Tomer Hertz · Anna Goldenberg · Christina Leslie -
2010 Workshop: Networks Across Disciplines: Theory and Applications »
Edo M Airoldi · Anna Goldenberg · Jure Leskovec · Quaid Morris