Timezone: »
Contributed talk 2: Subsampled Renyi Differential Privacy and Analytical Moments Accountant
Yu-Xiang Wang
We study the problem of subsampling in differential privacy (DP), a question that is the centerpiece behind many successful differentially private machine learning algorithms. Specifically, we provide a tight upper bound on the Renyi Differential Privacy (RDP) parameters for algorithms that: (1) subsample the dataset, and then (2) applies a randomized mechanism M to the subsample, in terms of the RDP parameters of M and the subsampling probability parameter. Our results generalize the moments accounting technique, developed by Abadi et al. [CCS'16] for the Gaussian mechanism, to any subsampled RDP mechanism.
Author Information
Yu-Xiang Wang (UC Santa Barbara)
More from the Same Authors
-
2021 Spotlight: Logarithmic Regret in Feature-based Dynamic Pricing »
Jianyu Xu · Yu-Xiang Wang -
2021 : Instance-dependent Offline Reinforcement Learning: From tabular RL to linear MDPs »
Ming Yin · Yu-Xiang Wang -
2022 : Generalized PTR: User-Friendly Recipes for Data-Adaptive Algorithms with Differential Privacy »
Rachel Redberg · Yuqing Zhu · Yu-Xiang Wang -
2022 : VOTING-BASED APPROACHES FOR DIFFERENTIALLY PRIVATE FEDERATED LEARNING »
Yuqing Zhu · Xiang Yu · Yi-Hsuan Tsai · Francesco Pittaluga · Masoud Faraki · Manmohan Chandraker · Yu-Xiang Wang -
2022 : Offline Reinforcement Learning with Closed-Form Policy Improvement Operators »
Jiachen Li · Edwin Zhang · Ming Yin · Qinxun Bai · Yu-Xiang Wang · William Yang Wang -
2022 : Offline Policy Evaluation for Reinforcement Learning with Adaptively Collected Data »
Sunil Madhow · Dan Qiao · Yu-Xiang Wang -
2022 : Near-Optimal Deployment Efficiency in Reward-Free Reinforcement Learning with Linear Function Approximation »
Dan Qiao · Yu-Xiang Wang -
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 : Differentially Private Bias-Term only Fine-tuning of Foundation Models »
Zhiqi Bu · Yu-Xiang Wang · Sheng Zha · George Karypis -
2023 Poster: Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger »
Zhiqi Bu · Yu-Xiang Wang · Sheng Zha · George Karypis -
2023 Poster: Offline Reinforcement Learning with Differential Privacy »
Dan Qiao · Yu-Xiang Wang -
2023 Poster: Posterior Sampling with Delayed Feedback for Reinforcement Learning with Linear Function Approximation »
Lijing Kuang · Ming Yin · Mengdi Wang · Yu-Xiang Wang · Yian Ma -
2023 Poster: Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms »
Dheeraj Baby · Saurabh Garg · Tzu-Ching Yen · Sivaraman Balakrishnan · Zachary Lipton · Yu-Xiang Wang -
2023 Poster: Improving the Privacy and Practicality of Objective Perturbation for Differentially Private Linear Learners »
Rachel Redberg · Antti Koskela · Yu-Xiang Wang -
2023 Poster: A Privacy-Friendly Approach to Data Valuation »
Jiachen T. Wang · Yuqing Zhu · Yu-Xiang Wang · Ruoxi Jia · Prateek Mittal -
2022 : Contributed Talk: Differentially Private Bias-Term only Fine-tuning of Foundation Models »
Zhiqi Bu · Yu-Xiang Wang · Sheng Zha · George Karypis -
2022 : Panel on Privacy and Security in Machine Learning Systems »
Graham Cormode · Borja Balle · Yu-Xiang Wang · Alejandro Saucedo · Neil Lawrence -
2022 : Practical differential privacy »
Yu-Xiang Wang · Fariba Yousefi -
2022 : Practical differential privacy »
Yu-Xiang Wang -
2022 Poster: SeqPATE: Differentially Private Text Generation via Knowledge Distillation »
Zhiliang Tian · Yingxiu Zhao · Ziyue Huang · Yu-Xiang Wang · Nevin L. Zhang · He He -
2022 Poster: Differentially Private Linear Sketches: Efficient Implementations and Applications »
Fuheng Zhao · Dan Qiao · Rachel Redberg · Divyakant Agrawal · Amr El Abbadi · Yu-Xiang Wang -
2022 Poster: Optimal Dynamic Regret in LQR Control »
Dheeraj Baby · Yu-Xiang Wang -
2021 Workshop: Privacy in Machine Learning (PriML) 2021 »
Yu-Xiang Wang · Borja Balle · Giovanni Cherubin · Kamalika Chaudhuri · Antti Honkela · Jonathan Lebensold · Casey Meehan · Mi Jung Park · Adrian Weller · Yuqing Zhu -
2021 Poster: Privately Publishable Per-instance Privacy »
Rachel Redberg · Yu-Xiang Wang -
2021 Poster: Logarithmic Regret in Feature-based Dynamic Pricing »
Jianyu Xu · Yu-Xiang Wang -
2021 Poster: Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings »
Ming Yin · Yu-Xiang Wang -
2021 Poster: Towards Instance-Optimal Offline Reinforcement Learning with Pessimism »
Ming Yin · Yu-Xiang Wang -
2021 Poster: Near-Optimal Offline Reinforcement Learning via Double Variance Reduction »
Ming Yin · Yu Bai · Yu-Xiang Wang -
2020 Workshop: Privacy Preserving Machine Learning - PriML and PPML Joint Edition »
Borja Balle · James Bell · AurĂ©lien Bellet · Kamalika Chaudhuri · Adria Gascon · Antti Honkela · Antti Koskela · Casey Meehan · Olga Ohrimenko · Mi Jung Park · Mariana Raykova · Mary Anne Smart · Yu-Xiang Wang · Adrian Weller -
2020 Poster: Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift »
Remi Tachet des Combes · Han Zhao · Yu-Xiang Wang · Geoffrey Gordon -
2020 Poster: Adaptive Online Estimation of Piecewise Polynomial Trends »
Dheeraj Baby · Yu-Xiang Wang -
2020 Poster: Improving Sparse Vector Technique with Renyi Differential Privacy »
Yuqing Zhu · Yu-Xiang Wang -
2019 Poster: Online Forecasting of Total-Variation-bounded Sequences »
Dheeraj Baby · Yu-Xiang Wang -
2019 Poster: Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting »
Shiyang Li · Xiaoyong Jin · Yao Xuan · Xiyou Zhou · Wenhu Chen · Yu-Xiang Wang · Xifeng Yan -
2019 Poster: Towards Optimal Off-Policy Evaluation for Reinforcement Learning with Marginalized Importance Sampling »
Tengyang Xie · Yifei Ma · Yu-Xiang Wang -
2019 Poster: Provably Efficient Q-Learning with Low Switching Cost »
Yu Bai · Tengyang Xie · Nan Jiang · Yu-Xiang Wang -
2017 Poster: Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · James Sharpnack · Ryan Tibshirani -
2016 : Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang -
2016 Poster: Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · Ryan Tibshirani -
2015 : Yu-Xiang Wang: Learning with differential privacy: stability, learnability and the sufficiency and necessity of ERM principle »
Yu-Xiang Wang -
2015 Poster: Differentially private subspace clustering »
Yining Wang · Yu-Xiang Wang · Aarti Singh -
2013 Poster: Provable Subspace Clustering: When LRR meets SSC »
Yu-Xiang Wang · Huan Xu · Chenlei Leng -
2013 Spotlight: Provable Subspace Clustering: When LRR meets SSC »
Yu-Xiang Wang · Huan Xu · Chenlei Leng