Timezone: »
Hyperbolic spaces have recently gained momentum in the context of machine learning due to their high capacity and tree-likeliness properties. However, the representational power of hyperbolic geometry is not yet on par with Euclidean geometry, firstly because of the absence of corresponding hyperbolic neural network layers. Here, we bridge this gap in a principled manner by combining the formalism of Möbius gyrovector spaces with the Riemannian geometry of the Poincaré model of hyperbolic spaces. As a result, we derive hyperbolic versions of important deep learning tools: multinomial logistic regression, feed-forward and recurrent neural networks. This allows to embed sequential data and perform classification in the hyperbolic space. Empirically, we show that, even if hyperbolic optimization tools are limited, hyperbolic sentence embeddings either outperform or are on par with their Euclidean variants on textual entailment and noisy-prefix recognition tasks.
Author Information
Octavian Ganea (ETH Zurich)
Gary Becigneul (ETH Zürich & MPI Tübingen)
Thomas Hofmann (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Hyperbolic Neural Networks »
Thu. Dec 6th through Fri the 7th Room Room 210 #29
More from the Same Authors
-
2021 Spotlight: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2021 Spotlight: Precise characterization of the prior predictive distribution of deep ReLU networks »
Lorenzo Noci · Gregor Bachmann · Kevin Roth · Sebastian Nowozin · Thomas Hofmann -
2021 : Crystal Diffusion Variational Autoencoder for Periodic Material Generation »
Tian Xie · Xiang Fu · Octavian Ganea · Regina Barzilay · Tommi Jaakkola -
2022 : Cosmology from Galaxy Redshift Surveys with PointNet »
Sotiris Anagnostidis · Arne Thomsen · Alexandre Refregier · Tomasz Kacprzak · Luca Biggio · Thomas Hofmann · Tilman Tröster -
2022 : Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks in Continual Learning »
Sanghwan Kim · Lorenzo Noci · Antonio Orvieto · Thomas Hofmann -
2022 Poster: OpenFilter: A Framework to Democratize Research Access to Social Media AR Filters »
Piera Riccio · Bill Psomas · Francesco Galati · Francisco Escolano · Thomas Hofmann · Nuria Oliver -
2021 Poster: Analytic Insights into Structure and Rank of Neural Network Hessian Maps »
Sidak Pal Singh · Gregor Bachmann · Thomas Hofmann -
2021 Poster: Precise characterization of the prior predictive distribution of deep ReLU networks »
Lorenzo Noci · Gregor Bachmann · Kevin Roth · Sebastian Nowozin · Thomas Hofmann -
2021 Poster: Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect »
Lorenzo Noci · Kevin Roth · Gregor Bachmann · Sebastian Nowozin · Thomas Hofmann -
2021 Poster: GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles »
Octavian Ganea · Lagnajit Pattanaik · Connor Coley · Regina Barzilay · Klavs Jensen · William Green · Tommi Jaakkola -
2020 Poster: Batch normalization provably avoids ranks collapse for randomly initialised deep networks »
Hadi Daneshmand · Jonas Kohler · Francis Bach · Thomas Hofmann · Aurelien Lucchi -
2020 Poster: Adversarial Training is a Form of Data-dependent Operator Norm Regularization »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2020 Spotlight: Adversarial Training is a Form of Data-dependent Operator Norm Regularization »
Kevin Roth · Yannic Kilcher · Thomas Hofmann -
2020 Poster: Convolutional Generation of Textured 3D Meshes »
Dario Pavllo · Graham Spinks · Thomas Hofmann · Marie-Francine Moens · Aurelien Lucchi -
2020 Oral: Convolutional Generation of Textured 3D Meshes »
Dario Pavllo · Graham Spinks · Thomas Hofmann · Marie-Francine Moens · Aurelien Lucchi -
2019 Poster: A Domain Agnostic Measure for Monitoring and Evaluating GANs »
Paulina Grnarova · Kfir Y. Levy · Aurelien Lucchi · Nathanael Perraudin · Ian Goodfellow · Thomas Hofmann · Andreas Krause -
2018 Poster: Deep State Space Models for Unconditional Word Generation »
Florian Schmidt · Thomas Hofmann -
2017 Poster: Stabilizing Training of Generative Adversarial Networks through Regularization »
Kevin Roth · Aurelien Lucchi · Sebastian Nowozin · Thomas Hofmann -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro -
2015 Poster: Variance Reduced Stochastic Gradient Descent with Neighbors »
Thomas Hofmann · Aurelien Lucchi · Simon Lacoste-Julien · Brian McWilliams -
2014 Poster: Communication-Efficient Distributed Dual Coordinate Ascent »
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan