Timezone: »
What policy should be employed in a Markov decision process with uncertain parameters? Robust optimization answer to this question is to use rectangular uncertainty sets, which independently reflect available knowledge about each state, and then obtains a decision policy that maximizes expected reward for the worst-case decision process parameters from these uncertainty sets. While this rectangularity is convenient computationally and leads to tractable solutions, it often produces policies that are too conservative in practice, and does not facilitate knowledge transfer between portions of the state space or across related decision processes. In this work, we propose non-rectangular uncertainty sets that bound marginal moments of state-action features defined over entire trajectories through a decision process. This enables generalization to different portions of the state space while retaining appropriate uncertainty of the decision process. We develop algorithms for solving the resulting robust decision problems, which reduce to finding an optimal policy for a mixture of decision processes, and demonstrate the benefits of our approach experimentally.
Author Information
Andrea Tirinzoni (Politecnico di Milano)
Marek Petrik (University of New Hampshire)
Xiangli Chen (University of Illinois at Chicago)
Brian Ziebart (University of Illinois at Chicago)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Policy-Conditioned Uncertainty Sets for Robust Markov Decision Processes »
Thu. Dec 6th through Fri the 7th Room Room 517 AB #168
More from the Same Authors
-
2021 : Unbiased Efficient Feature Counts for Inverse RL »
Gerard Donahue · Brendan Crowe · Marek Petrik · Daniel Brown -
2021 : Behavior Policy Search for Risk Estimators in Reinforcement Learning »
Elita Lobo · Marek Petrik · Dharmashankar Subramanian -
2022 Poster: Robust $\phi$-Divergence MDPs »
Chin Pang Ho · Marek Petrik · Wolfram Wiesemann -
2022 Poster: Moment Distributionally Robust Tree Structured Prediction »
Yeshu Li · Danyal Saeed · Xinhua Zhang · Brian Ziebart · Kevin Gimpel -
2021 : Safe RL Panel Discussion »
Animesh Garg · Marek Petrik · Shie Mannor · Claire Tomlin · Ugo Rosolia · Dylan Hadfield-Menell -
2021 Workshop: Safe and Robust Control of Uncertain Systems »
Ashwin Balakrishna · Brijen Thananjeyan · Daniel Brown · Marek Petrik · Melanie Zeilinger · Sylvia Herbert -
2021 : Fairness for Robust Learning to Rank »
Omid Memarrast · Ashkan Rezaei · Rizal Fathony · Brian Ziebart -
2021 Poster: Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection »
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta -
2021 Poster: Fast Algorithms for $L_\infty$-constrained S-rectangular Robust MDPs »
Bahram Behzadian · Marek Petrik · Chin Pang Ho -
2021 Poster: Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification »
Clémence Réda · Andrea Tirinzoni · Rémy Degenne -
2020 Poster: An Asymptotically Optimal Primal-Dual Incremental Algorithm for Contextual Linear Bandits »
Andrea Tirinzoni · Matteo Pirotta · Marcello Restelli · Alessandro Lazaric -
2020 Poster: Bayesian Robust Optimization for Imitation Learning »
Daniel S. Brown · Scott Niekum · Marek Petrik -
2019 Workshop: Safety and Robustness in Decision-making »
Mohammad Ghavamzadeh · Shie Mannor · Yisong Yue · Marek Petrik · Yinlam Chow -
2019 Poster: Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs »
Marek Petrik · Reazul Hasan Russel -
2018 Poster: Distributionally Robust Graphical Models »
Rizal Fathony · Ashkan Rezaei · Mohammad Ali Bashiri · Xinhua Zhang · Brian Ziebart -
2018 Poster: Transfer of Value Functions via Variational Methods »
Andrea Tirinzoni · Rafael Rodriguez Sanchez · Marcello Restelli -
2017 Poster: Adversarial Surrogate Losses for Ordinal Regression »
Rizal Fathony · Mohammad Ali Bashiri · Brian Ziebart -
2016 Poster: Safe Policy Improvement by Minimizing Robust Baseline Regret »
Mohammad Ghavamzadeh · Marek Petrik · Yinlam Chow -
2016 Poster: Adversarial Multiclass Classification: A Risk Minimization Perspective »
Rizal Fathony · Anqi Liu · Kaiser Asif · Brian Ziebart -
2015 Poster: Softstar: Heuristic-Guided Probabilistic Inference »
Mathew Monfort · Brenden M Lake · Brenden Lake · Brian Ziebart · Patrick Lucey · Josh Tenenbaum -
2015 Poster: Adversarial Prediction Games for Multivariate Losses »
Hong Wang · Wei Xing · Kaiser Asif · Brian Ziebart -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Workshop: From Bad Models to Good Policies (Sequential Decision Making under Uncertainty) »
Odalric-Ambrym Maillard · Timothy A Mann · Shie Mannor · Jeremie Mary · Laurent Orseau · Thomas Dietterich · Ronald Ortner · Peter Grünwald · Joelle Pineau · Raphael Fonteneau · Georgios Theocharous · Esteban D Arcaute · Christos Dimitrakakis · Nan Jiang · Doina Precup · Pierre-Luc Bacon · Marek Petrik · Aviv Tamar -
2014 Poster: RAAM: The Benefits of Robustness in Approximating Aggregated MDPs in Reinforcement Learning »
Marek Petrik · Dharmashankar Subramanian -
2014 Poster: Robust Classification Under Sample Selection Bias »
Anqi Liu · Brian Ziebart -
2014 Spotlight: Robust Classification Under Sample Selection Bias »
Anqi Liu · Brian Ziebart -
2014 Spotlight: RAAM: The Benefits of Robustness in Approximating Aggregated MDPs in Reinforcement Learning »
Marek Petrik · Dharmashankar Subramanian