Timezone: »
Observational data is increasingly used as a means for making individual-level causal predictions and intervention recommendations. The foremost challenge of causal inference from observational data is hidden confounding, whose presence cannot be tested in data and can invalidate any causal conclusion. Experimental data does not suffer from confounding but is usually limited in both scope and scale. We introduce a novel method of using limited experimental data to correct the hidden confounding in causal effect models trained on larger observational data, even if the observational data does not fully overlap with the experimental data. Our method makes strictly weaker assumptions than existing approaches, and we prove conditions under which it yields a consistent estimator. We demonstrate our method's efficacy using real-world data from a large educational experiment.
Author Information
Nathan Kallus (Cornell University)
Aahlad Puli (NYU)
Uri Shalit (Technion)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Removing Hidden Confounding by Experimental Grounding »
Thu. Dec 6th 03:45 -- 05:45 PM Room Room 210 #2
More from the Same Authors
-
2021 : Bandits with Partially Observable Confounded Data »
Guy Tennenholtz · Uri Shalit · Shie Mannor · Yonathan Efroni -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Learning Invariant Representations with Missing Data »
Mark Goldstein · Adriel Saporta · Aahlad Puli · Rajesh Ranganath · Andrew Miller -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2022 : Malign Overfitting: Interpolation and Invariance are Fundamentally at Odds »
Yoav Wald · Gal Yona · Uri Shalit · Yair Carmon -
2023 Poster: Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage »
Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 Poster: The Benefits of Being Distributional: Small-Loss Bounds for Reinforcement Learning »
Kaiwen Wang · Kevin Zhou · Runzhe Wu · Nathan Kallus · Wen Sun -
2023 Poster: Future-Dependent Value-Based Off-Policy Evaluation in POMDPs »
Masatoshi Uehara · Haruka Kiyohara · Andrew Bennett · Victor Chernozhukov · Nan Jiang · Nathan Kallus · Chengchun Shi · Wen Sun -
2022 Panel: Panel 3C-5: Biologically-Plausible Determinant Maximization… & What's the Harm? ... »
Bariscan Bozkurt · Nathan Kallus -
2022 Poster: Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2022 Poster: The Implicit Delta Method »
Nathan Kallus · James McInerney -
2022 Poster: Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions »
Andrew Jesson · Alyson Douglas · Peter Manshausen · Maëlys Solal · Nicolai Meinshausen · Philip Stier · Yarin Gal · Uri Shalit -
2022 Poster: Reinforcement Learning with a Terminator »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Shie Mannor · Uri Shalit · Gal Chechik · Assaf Hallak · Gal Dalal -
2022 Poster: What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment »
Nathan Kallus -
2021 Workshop: Causal Inference Challenges in Sequential Decision Making: Bridging Theory and Practice »
Aurelien Bibaut · Maria Dimakopoulou · Nathan Kallus · Xinkun Nie · Masatoshi Uehara · Kelly Zhang -
2021 : Uri Shalit - Calibration, out-of-distribution generalization and a path towards causal representations »
Uri Shalit -
2021 Poster: Risk Minimization from Adaptively Collected Data: Guarantees for Supervised and Policy Learning »
Aurelien Bibaut · Nathan Kallus · Maria Dimakopoulou · Antoine Chambaz · Mark van der Laan -
2021 Poster: Control Variates for Slate Off-Policy Evaluation »
Nikos Vlassis · Ashok Chandrashekar · Fernando Amat · Nathan Kallus -
2021 Poster: Inverse-Weighted Survival Games »
Xintian Han · Mark Goldstein · Aahlad Puli · Thomas Wies · Adler Perotte · Rajesh Ranganath -
2021 Poster: Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 Poster: Post-Contextual-Bandit Inference »
Aurelien Bibaut · Maria Dimakopoulou · Nathan Kallus · Antoine Chambaz · Mark van der Laan -
2021 Poster: On Calibration and Out-of-Domain Generalization »
Yoav Wald · Amir Feder · Daniel Greenfeld · Uri Shalit -
2020 Workshop: Consequential Decisions in Dynamic Environments »
Niki Kilbertus · Angela Zhou · Ashia Wilson · John Miller · Lily Hu · Lydia T. Liu · Nathan Kallus · Shira Mitchell -
2020 : Spotlight Talk 4: Fairness, Welfare, and Equity in Personalized Pricing »
Nathan Kallus · Angela Zhou -
2020 Poster: Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning »
Nathan Kallus · Angela Zhou -
2020 Poster: General Control Functions for Causal Effect Estimation from IVs »
Aahlad Puli · Rajesh Ranganath -
2020 Poster: X-CAL: Explicit Calibration for Survival Analysis »
Mark Goldstein · Xintian Han · Aahlad Puli · Adler Perotte · Rajesh Ranganath -
2020 Poster: Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models »
Andrew Jesson · Sören Mindermann · Uri Shalit · Yarin Gal -
2020 Poster: Causal Estimation with Functional Confounders »
Aahlad Puli · Adler Perotte · Rajesh Ranganath -
2020 Poster: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2020 Spotlight: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2020 Poster: Doubly Robust Off-Policy Value and Gradient Estimation for Deterministic Policies »
Nathan Kallus · Masatoshi Uehara -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 : Opening Remarks »
Thorsten Joachims · Nathan Kallus · Michele Santacatterina · Adith Swaminathan · David Sontag · Angela Zhou -
2019 Workshop: “Do the right thing”: machine learning and causal inference for improved decision making »
Michele Santacatterina · Thorsten Joachims · Nathan Kallus · Adith Swaminathan · David Sontag · Angela Zhou -
2019 : Nathan Kallus: Efficiently Breaking the Curse of Horizon with Double Reinforcement Learning »
Nathan Kallus -
2019 Poster: The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the XAUC Metric »
Nathan Kallus · Angela Zhou -
2019 Poster: Assessing Disparate Impact of Personalized Interventions: Identifiability and Bounds »
Nathan Kallus · Angela Zhou -
2019 Poster: Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for Reinforcement Learning »
Nathan Kallus · Masatoshi Uehara -
2019 Poster: Policy Evaluation with Latent Confounders via Optimal Balance »
Andrew Bennett · Nathan Kallus -
2019 Poster: Deep Generalized Method of Moments for Instrumental Variable Analysis »
Andrew Bennett · Nathan Kallus · Tobias Schnabel -
2018 Workshop: Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy »
Manuela Veloso · Nathan Kallus · Sameena Shah · Senthil Kumar · Isabelle Moulinier · Jiahao Chen · John Paisley -
2018 Poster: Causal Inference with Noisy and Missing Covariates via Matrix Factorization »
Nathan Kallus · Xiaojie Mao · Madeleine Udell -
2018 Poster: Confounding-Robust Policy Improvement »
Nathan Kallus · Angela Zhou -
2018 Poster: Balanced Policy Evaluation and Learning »
Nathan Kallus -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau -
2010 Spotlight: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2010 Poster: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio