Timezone: »
We present a novel extension of multi-output Gaussian processes for handling heterogeneous outputs. We assume that each output has its own likelihood function and use a vector-valued Gaussian process prior to jointly model the parameters in all likelihoods as latent functions. Our multi-output Gaussian process uses a covariance function with a linear model of coregionalisation form. Assuming conditional independence across the underlying latent functions together with an inducing variable framework, we are able to obtain tractable variational bounds amenable to stochastic variational inference. We illustrate the performance of the model on synthetic data and two real datasets: a human behavioral study and a demographic high-dimensional dataset.
Author Information
Pablo Moreno-Muñoz (Universidad Carlos III de Madrid)
Antonio Artés (Universidad Carlos III de Madrid)
Mauricio Álvarez (University of Sheffield)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Heterogeneous Multi-output Gaussian Process Prediction »
Wed. Dec 5th through Thu the 6th Room Room 210 #14
More from the Same Authors
-
2021 Poster: Modular Gaussian Processes for Transfer Learning »
Pablo Moreno-Muñoz · Antonio Artes · Mauricio Álvarez -
2021 Poster: Learning Nonparametric Volterra Kernels with Gaussian Processes »
Magnus Ross · Michael T Smith · Mauricio Álvarez -
2021 Poster: Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features »
Thomas McDonald · Mauricio Álvarez -
2020 Poster: Multi-task Causal Learning with Gaussian Processes »
Virginia Aglietti · Theodoros Damoulas · Mauricio Álvarez · Javier González -
2019 : Poster Session »
Ayse Cakmak · Yunkai Zhang · Srijith Prabhakarannair Kusumam · Mohamed Osama Ahmed · Xintao Wu · Jayesh Choudhari · David I Inouye · Thomas Taylor · Michel Besserve · Ali Caner Turkmen · Kazi Islam · Antonio Artés · Amrith Setlur · Zhanghua Fu · Zhen Han · Abir De · Nan Du · Pablo Sanchez-Martin -
2019 Poster: Multi-task Learning for Aggregated Data using Gaussian Processes »
Fariba Yousefi · Michael T Smith · Mauricio Álvarez -
2017 : Final remarks »
Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez -
2017 : Opening remarks »
Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez -
2017 Workshop: Transparent and interpretable Machine Learning in Safety Critical Environments »
Alessandra Tosi · Alfredo Vellido · Mauricio Álvarez -
2017 Poster: Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes »
Zhenwen Dai · Mauricio Álvarez · Neil Lawrence