Timezone: »
Spotlight
Constant Regret, Generalized Mixability, and Mirror Descent
Zakaria Mhammedi · Robert Williamson
We consider the setting of prediction with expert advice; a learner makes predictions by aggregating those of a group of experts. Under this setting, and for the right choice of loss function and ``mixing'' algorithm, it is possible for the learner to achieve a constant regret regardless of the number of prediction rounds. For example, a constant regret can be achieved for \emph{mixable} losses using the \emph{aggregating algorithm}. The \emph{Generalized Aggregating Algorithm} (GAA) is a name for a family of algorithms parameterized by convex functions on simplices (entropies), which reduce to the aggregating algorithm when using the \emph{Shannon entropy} $\operatorname{S}$. For a given entropy $\Phi$, losses for which a constant regret is possible using the \textsc{GAA} are called $\Phi$-mixable. Which losses are $\Phi$-mixable was previously left as an open question. We fully characterize $\Phi$-mixability and answer other open questions posed by \cite{Reid2015}. We show that the Shannon entropy $\operatorname{S}$ is fundamental in nature when it comes to mixability; any $\Phi$-mixable loss is necessarily $\operatorname{S}$-mixable, and the lowest worst-case regret of the \textsc{GAA} is achieved using the Shannon entropy. Finally, by leveraging the connection between the \emph{mirror descent algorithm} and the update step of the GAA, we suggest a new \emph{adaptive} generalized aggregating algorithm and analyze its performance in terms of the regret bound.
Author Information
Zakaria Mhammedi (The Australian National University)
Robert Williamson (Australian National University & Data61)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Constant Regret, Generalized Mixability, and Mirror Descent »
Wed. Dec 5th 03:45 -- 05:45 PM Room Room 210 #96
More from the Same Authors
-
2021 Poster: Risk Monotonicity in Statistical Learning »
Zakaria Mhammedi -
2021 Oral: Risk Monotonicity in Statistical Learning »
Zakaria Mhammedi -
2020 Poster: PAC-Bayesian Bound for the Conditional Value at Risk »
Zakaria Mhammedi · Benjamin Guedj · Robert Williamson -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Spotlight: PAC-Bayesian Bound for the Conditional Value at Risk »
Zakaria Mhammedi · Benjamin Guedj · Robert Williamson -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: PAC-Bayes Un-Expected Bernstein Inequality »
Zakaria Mhammedi · Peter Grünwald · Benjamin Guedj -
2019 Poster: A Primal-Dual link between GANs and Autoencoders »
Hisham Husain · Richard Nock · Robert Williamson -
2018 Poster: A loss framework for calibrated anomaly detection »
Aditya Menon · Robert Williamson -
2018 Spotlight: A loss framework for calibrated anomaly detection »
Aditya Menon · Robert Williamson -
2017 Poster: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2017 Spotlight: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2015 Poster: Learning with Symmetric Label Noise: The Importance of Being Unhinged »
Brendan van Rooyen · Aditya Menon · Robert Williamson -
2015 Spotlight: Learning with Symmetric Label Noise: The Importance of Being Unhinged »
Brendan van Rooyen · Aditya Menon · Robert Williamson -
2014 Poster: From Stochastic Mixability to Fast Rates »
Nishant Mehta · Robert Williamson -
2014 Oral: From Stochastic Mixability to Fast Rates »
Nishant Mehta · Robert Williamson -
2012 Poster: Mixability in Statistical Learning »
Tim van Erven · Peter Grünwald · Mark Reid · Robert Williamson -
2011 Workshop: Relations between machine learning problems - an approach to unify the field »
Robert Williamson · John Langford · Ulrike von Luxburg · Mark Reid · Jennifer Wortman Vaughan -
2011 Poster: Composite Multiclass Losses »
Elodie Vernet · Robert Williamson · Mark Reid -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh