Timezone: »
Author Information
Thaer Moustafa Dieb (National Institute for Materials Science)
Aditya Balu (Iowa State University)
Amir H. Khasahmadi (University of Toronto)
Viraj Shah (Iowa State University)
Boris Knyazev (University of Guelph)
Payel Das (IBM Research)
Garrett Goh (PNNL)
Georgy Derevyanko (Concordia University)
Gianni De Fabritiis (University Pompeu Fabra)
Reiko Hagawa (Panasonic)
John Ingraham (Massachusetts Institute of Technology)
David Belanger (Google Brain)
Jialin Song (Caltech)
Kim Nicoli (Techinsche Universität Berlin)
Miha Skalic (Universitat Pompeu Fabra)
Michelle Wu (Stanford University)
Niklas Gebauer (Technische Universität Berlin)
Peter Bjørn Jørgensen (Technical University of Denmark)
Ryan-Rhys Griffiths (University of Cambridge)
Shengchao Liu (UW-Madison)
Sheshera Mysore (University of Massachusetts Amherst)
Hai Leong Chieu (DSO National Laboratories)
Philippe Schwaller (University of Cambridge / IBM Research)
Bart Olsthoorn (NORDITA)
Bianca-Cristina Cristescu (ETH Zurich)
Wei-Cheng Tseng (National Tsing Hua University)

I am an incoming PhD student at the University of Toronto advised by Prof. Florian Shkurti. I am interested in Computer Vision, Robot Learning and Multi-Agent System. Previously, I worked with Prof. Phillip Isola on offline learning in a multi-agent scenario. Also, I joined the project working on an adaptation approach in multi-agent reinforcement learning, supervised by Dr. Da-Cheng Juan and Dr. Wei Wei. I graduated with B.S. and M.S. from the Electrical Engineering Department at National Tsing Hua University, supervised by Prof. Min Sun.
Seongok Ryu (KAIST)
Iddo Drori (Columbia University and NYU)
Iddo Drori is a visiting Associate Professor in the School of Operations Research and Information Engineering at Cornell University and adjunct Associate Professor in the Department of Computer Science at Columbia University. Between 2017-2019 he was a research scientist and adjunct Professor at NYU Center for Data Science and Courant Institute while teaching at Columbia University and NYU Tandon. Between 2016-2017 he was a senior lecturer in Computer Science at Colman and lecturer at Tel Aviv University. He did his MSc and BSc in Computer Science and Mathematics at the Hebrew University with honors in the special program for outstanding students, his PhD in Computer Science at Tel Aviv University, and post-doc in Statistics at Stanford University. In the past year he has published 13 new publications in automated machine learning; meta-learning for graph algorithms; synthesizing language, vision, and audio; and protein structure prediction. He also served on five program committees in the past year. In the past two years he taught 13 courses on Deep Learning, Data Science, Machine Learning, and Optimization. Iddo has industry experience, and between 2011-2016 founded and served as CEO of a data science start-up acquired in 2017, after working as a research scientist for companies acquired by Anaplan, Daz3D, and Apple. Iddo enjoys teaching and received awards for mentoring the best capstone project at Colman, best teaching evaluations at Tel Aviv University, and mentored the winning teams in the ICCV 2019 Learning to Drive Challenge in the Deep Learning course at Columbia University. He also spends his time writing a forthcoming book titled The Science of Deep Learning to be published by Cambridge University Press.
Kevin Yang (California Institute of Technology)
Soumya Sanyal (IISc, Bangalore)
Zois Boukouvalas (University of Maryland, College Park)
Rishi Bedi (Stanford University)
Arindam Paul (Northwestern University)
Sambuddha Ghosal (Iowa State University)
Daniil Bash (Institute of Materials Research and Engineering)
Clyde Fare (IBM)
Research Staff working at the interface of chemistry and machine learning. With an emphasis on Bayesian optimisation, deep graph neural networks, transfer learning, task selection in multitask networks.
Zekun Ren (Singapore MIT Alliance for Research and Technology)
Ali Oskooei (IBM Research Zurich Laboratory)
Minn Xuan Wong (DSO National Laboratories)
Paul Sinz (Michigan State University)
Théophile Gaudin (IBM Research)
Wengong Jin (MIT CSAIL)
Paul Leu (University of Pittsburgh)
More from the Same Authors
-
2020 : Paper 11: Vehicle Trajectory Prediction by Transfer Learning of Semi-Supervised Models »
Nick Lamm · Iddo Drori -
2021 : CSFCube - A Test Collection of Computer Science Research Articles for Faceted Query by Example »
Sheshera Mysore · Tim O'Gorman · Andrew McCallum · Hamed Zamani -
2021 : Accurate Multi-Endpoint Molecular Toxicity Predictions in Humans with Contrastive Explanations »
Bhanushee Sharma · Vijil Chenthamarakshan · Amit Dhurandhar · James Hendler · Jonathan S. Dordick · Payel Das -
2021 : Dock2D: Toy datasets for the molecular recognition problem »
Georgy Derevyanko · Sid Bhadra-Lobo · Guillaume Lamoureux -
2021 : Quantifying and Alleviating Distribution Shifts in Foundation Models on Review Classification »
Sehaj Chawla · Nikhil Singh · Iddo Drori -
2021 : Identification of Enzymatic Active Sites with Unsupervised Language Modelling »
Loïc Kwate Dassi · Matteo Manica · Daniel Probst · Philippe Schwaller · Yves Gaetan Nana Teukam · Teodoro Laino -
2021 : Human-in-the-loop for a Disconnection Aware Retrosynthesis »
Andrea Byekwaso · Philippe Schwaller · Alain C. Vaucher · Teodoro Laino -
2021 : Learning Discrete Neural Reaction Class to Improve Retrosynthesis Prediction »
Théophile Gaudin · Animesh Garg · Alan Aspuru-Guzik -
2021 : Equivariant Transformers for Neural Network based Molecular Potentials »
Philipp Thölke · Gianni De Fabritiis -
2021 : Sample-Efficient Generation of Novel Photo-acid Generator Molecules using a Deep Generative Model »
Samuel Hoffman · Vijil Chenthamarakshan · Dmitry Zubarev · Daniel Sanders · Payel Das -
2021 : Grapher: Multi-Stage Knowledge Graph Construction using Pretrained Language Models »
Igor Melnyk · Pierre Dognin · Payel Das -
2022 : Machine Learning for Chemical Reactions \\A Dance of Datasets and Models »
Mathias Schreiner · Arghya Bhowmik · Tejs Vegge · Jonas Busk · Peter Bjørn Jørgensen · Ole Winther -
2022 : Reducing Down(stream)time: Pretraining Molecular GNNs using Heterogeneous AI Accelerators »
Jenna A Bilbrey · Kristina Herman · Henry Sprueill · Sotiris Xantheas · Payel Das · Manuel Lopez Roldan · Mike Kraus · Hatem Helal · Sutanay Choudhury -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 : Adaptive Pre-training of Language Models for Better Logical Reasoning »
Soumya Sanyal · Yichong Xu · Shuohang Wang · Ziyi Yang · Reid Pryzant · Wenhao Yu · Chenguang Zhu · Xiang Ren -
2022 : Generative Design of Material Microstructures for Organic Solar Cells using Diffusion Models »
Ethan Herron · Xian Yeow Lee · Aditya Balu · Baskar Ganapathysubramanian · Soumik Sarkar · Adarsh Krishnamurthy -
2022 : Communication-efficient Decentralized Deep Learning »
Fateme Fotouhi · Aditya Balu · Zhanhong Jiang · Yasaman Esfandiari · Salman Jahani · Soumik Sarkar -
2022 : Consistent Training via Energy-Based GFlowNets for Modeling Discrete Joint Distributions »
Chanakya Ekbote · Moksh Jain · Payel Das · Yoshua Bengio -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights »
Konstantin Schürholt · Boris Knyazev · Xavier Giro-i-Nieto · Damian Borth -
2022 : Panel »
Pin-Yu Chen · Alex Gittens · Bo Li · Celia Cintas · Hilde Kuehne · Payel Das -
2022 : SynBench: Task-Agnostic Benchmarking of Pretrained Representations using Synthetic Data »
Ching-Yun Ko · Pin-Yu Chen · Jeet Mohapatra · Payel Das · Luca Daniel -
2022 Poster: Hyper-Representations as Generative Models: Sampling Unseen Neural Network Weights »
Konstantin Schürholt · Boris Knyazev · Xavier Giró-i-Nieto · Damian Borth -
2022 Poster: Model Zoos: A Dataset of Diverse Populations of Neural Network Models »
Konstantin Schürholt · Diyar Taskiran · Boris Knyazev · Xavier Giró-i-Nieto · Damian Borth -
2022 Expo Demonstration: Real-time Navigation of Chemical Space with Cloud-Based Inference from MoLFormer »
Payel Das · Brian Belgodere -
2021 : Grapher: Multi-Stage Knowledge Graph Construction using Pretrained Language Models »
Igor Melnyk · Pierre Dognin · Payel Das -
2021 : Sample-Efficient Generation of Novel Photo-acid Generator Molecules using a Deep Generative Model »
Samuel Hoffman · Vijil Chenthamarakshan · Dmitry Zubarev · Daniel Sanders · Payel Das -
2021 Poster: Predicting Deep Neural Network Generalization with Perturbation Response Curves »
Yair Schiff · Brian Quanz · Payel Das · Pin-Yu Chen -
2021 Poster: SalKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning »
Aaron Chan · Jiashu Xu · Boyuan Long · Soumya Sanyal · Tanishq Gupta · Xiang Ren -
2021 Poster: Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination »
Arpan Mukherjee · Ali Tajer · Pin-Yu Chen · Payel Das -
2021 Poster: Differentiable Spline Approximations »
Minsu Cho · Aditya Balu · Ameya Joshi · Anjana Deva Prasad · Biswajit Khara · Soumik Sarkar · Baskar Ganapathysubramanian · Adarsh Krishnamurthy · Chinmay Hegde -
2020 : Spotlight Talk: Data augmentation strategies to improve reaction yield predictions and estimate uncertainty - Philippe Schwaller, Alain Vaucher, Teodoro Laino and Jean-Louis Reymond »
Philippe Schwaller -
2020 Workshop: Learning Meets Combinatorial Algorithms »
Marin Vlastelica · Jialin Song · Aaron Ferber · Brandon Amos · Georg Martius · Bistra Dilkina · Yisong Yue -
2020 : Spotlight: Characterizing the Latent Space of Molecular Generative Models with Persistent Homology Metrics »
Yair Schiff · Payel Das · Vijil Chenthamarakshan · Karthikeyan Natesan Ramamurthy -
2020 Poster: A General Large Neighborhood Search Framework for Solving Integer Linear Programs »
Jialin Song · ravi lanka · Yisong Yue · Bistra Dilkina -
2020 Poster: A Decentralized Parallel Algorithm for Training Generative Adversarial Nets »
Mingrui Liu · Wei Zhang · Youssef Mroueh · Xiaodong Cui · Jarret Ross · Tianbao Yang · Payel Das -
2020 : Spotlight on women at IBM Research »
Lisa Amini · Francesca Rossi · Celia Cintas · Payel Das -
2020 Poster: CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models »
Vijil Chenthamarakshan · Payel Das · Samuel Hoffman · Hendrik Strobelt · Inkit Padhi · Kar Wai Lim · Benjamin Hoover · Matteo Manica · Jannis Born · Teodoro Laino · Aleksandra Mojsilovic -
2020 : CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models »
Payel Das -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2020 Expo Talk Panel: AI against COVID-19 at IBM Research »
Divya Pathak · Payel Das · Michal Rosen-Zvi · Salim Roukos -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 : Environments and Data Sets »
Karl Cobbe · Gianni De Fabritiis · Denys Makoviichuk -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: End-to-End Learning on 3D Protein Structure for Interface Prediction »
Raphael Townshend · Rishi Bedi · Patricia Suriana · Ron Dror -
2019 Spotlight: N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules »
Shengchao Liu · Mehmet Demirel · Yingyu Liang -
2019 Poster: Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules »
Niklas Gebauer · Michael Gastegger · Kristof Schütt -
2018 Poster: ATOMO: Communication-efficient Learning via Atomic Sparsification »
Hongyi Wang · Scott Sievert · Shengchao Liu · Zachary Charles · Dimitris Papailiopoulos · Stephen Wright -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das -
2017 : Poster session 1 »
Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Thomas Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafael Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li -
2017 : Poster spotlights »
Emma Strubell · Garrett Goh · Masashi Tsubaki · Théophile Gaudin · Philippe Schwaller · Matthew Ragoza · Rafael Gomez-Bombarelli -
2017 Poster: Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network »
Wengong Jin · Connor Coley · Regina Barzilay · Tommi Jaakkola -
2017 Poster: Collaborative Deep Learning in Fixed Topology Networks »
Zhanhong Jiang · Aditya Balu · Chinmay Hegde · Soumik Sarkar -
2013 Poster: Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion »
Nguyen Viet Cuong · Wee Sun Lee · Nan Ye · Kian Ming Adam Chai · Hai Leong Chieu -
2012 Poster: MAP Inference in Chains using Column Generation »
David Belanger · Alexandre T Passos · Sebastian Riedel · Andrew McCallum -
2009 Poster: Conditional Random Fields with High-Order Features for Sequence Labeling »
Nan Ye · Wee Sun Lee · Hai Leong Chieu · Dan Wu -
2007 Poster: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Spotlight: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh