Timezone: »
Author Information
Zachary Lipton (Carnegie Mellon University)
Charles Sutton (Google)
Finale Doshi-Velez (Harvard)
Hanna Wallach (MSR NYC)
Suchi Saria (Johns Hopkins University)
Suchi Saria is an assistant professor of computer science, health policy and statistics at Johns Hopkins University. Her research interests are in statistical machine learning and computational healthcare. Specifically, her focus is in designing novel data-driven computing tools for optimizing decision-making. Her work is being used to drive electronic surveillance for reducing adverse events in the inpatient setting and individualize disease management in chronic diseases. She received her PhD from Stanford University with Prof. Daphne Koller. Her work has received recognition in the form of two cover articles in Science Translational Medicine (2010, 2015), paper awards by the the Association for Uncertainty in Artificial Intelligence (2007) and the American Medical Informatics Association (2011), an Annual Scientific Award by the Society of Critical Care Medicine (2014), a Rambus Fellowship (2004-2010), an NSF Computing Innovation fellowship (2011), and competitive awards from the Gordon and Betty Moore Foundation (2013), and Google Research (2014). In 2015, she was selected by the IEEE Intelligent Systems to the ``AI's 10 to Watch'' list. In 2016, she was selected as a DARPA Young Faculty awardee and to Popular Science's ``Brilliant 10’’.
Rich Caruana (Microsoft)
Thomas Rainforth (University of Oxford)
More from the Same Authors
-
2021 Spotlight: Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Making by Reinforcement Learning »
Kai Wang · Sanket Shah · Haipeng Chen · Andrew Perrault · Finale Doshi-Velez · Milind Tambe -
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Zijie Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2021 : Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation »
Ramtin Keramati · Omer Gottesman · Leo Celi · Finale Doshi-Velez · Emma Brunskill -
2021 : Model-Free Learning for Continuous Timing as an Action »
Helen Zhou · David Childers · Zachary Lipton -
2022 : An Empirical Analysis of the Advantages of Finite vs.~Infinite Width Bayesian Neural Networks »
Jiayu Yao · Yaniv Yacoby · Beau Coker · Weiwei Pan · Finale Doshi-Velez -
2022 : Downstream Datasets Make Surprisingly Good Pretraining Corpora »
Kundan Krishna · Saurabh Garg · Jeffrey Bigham · Zachary Lipton -
2022 : Disentangling the Mechanisms Behind Implicit Regularization in SGD »
Zachary Novack · Simran Kaur · Tanya Marwah · Saurabh Garg · Zachary Lipton -
2022 : Feature-Level Synthesis of Human and ML Insights »
Isaac Lage · Sonali Parbhoo · Finale Doshi-Velez -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Varshini Subhash · Zixi Chen · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 : RLSBench: A Large-Scale Empirical Study of Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · James Sharpnack · Alexander Smola · Sivaraman Balakrishnan · Zachary Lipton -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Zixi Chen · Varshini Subhash · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 : Local Causal Discovery for Estimating Causal Effects »
Shantanu Gupta · David Childers · Zachary Lipton -
2022 : (When) Are Contrastive Explanations of Reinforcement Learning Helpful? »
Sanjana Narayanan · Isaac Lage · Finale Doshi-Velez -
2022 : Leveraging Human Features at Test-Time »
Isaac Lage · Sonali Parbhoo · Finale Doshi-Velez -
2022 : An Empirical Analysis of the Advantages of Finite v.s. Infinite Width Bayesian Neural Networks »
Jiayu Yao · Yaniv Yacoby · Beau Coker · Weiwei Pan · Finale Doshi-Velez -
2022 : On the Maximum Hessian Eigenvalue and Generalization »
Simran Kaur · Jeremy M Cohen · Zachary Lipton -
2023 Poster: Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · J. Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Complementary Benefits of Contrastive Learning and Self-Training Under Distribution Shift »
Saurabh Garg · Amrith Setlur · Zachary Lipton · Sivaraman Balakrishnan · Virginia Smith · Aditi Raghunathan -
2023 Poster: Causal-structure Driven Augmentations for Text OOD Generalization »
Amir Feder · Yoav Wald · Claudia Shi · Suchi Saria · David Blei -
2023 Poster: Online Label Shift: Optimal Dynamic Regret meets Practical Algorithms »
Dheeraj Baby · Saurabh Garg · Tzu-Ching Yen · Sivaraman Balakrishnan · Zachary Lipton · Yu-Xiang Wang -
2022 : Panel on Technical Challenges Associated with Reliable Human Evaluations of Generative Models »
Long Ouyang · Tongshuang Wu · Zachary Lipton -
2022 Workshop: Human Evaluation of Generative Models »
Divyansh Kaushik · Jennifer Hsia · Jessica Huynh · Yonadav Shavit · Samuel Bowman · Ting-Hao Huang · Douwe Kiela · Zachary Lipton · Eric Michael Smith -
2022 : What Makes a Good Explanation?: A Unified View of Properties of Interpretable ML »
Varshini Subhash · Zixi Chen · Marton Havasi · Weiwei Pan · Finale Doshi-Velez -
2022 Poster: Characterizing Datapoints via Second-Split Forgetting »
Pratyush Maini · Saurabh Garg · Zachary Lipton · J. Zico Kolter -
2022 Poster: Unsupervised Learning under Latent Label Shift »
Manley Roberts · Pranav Mani · Saurabh Garg · Zachary Lipton -
2022 Poster: Domain Adaptation under Open Set Label Shift »
Saurabh Garg · Sivaraman Balakrishnan · Zachary Lipton -
2022 Poster: Addressing Leakage in Concept Bottleneck Models »
Marton Havasi · Sonali Parbhoo · Finale Doshi-Velez -
2022 Poster: Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare »
Shengpu Tang · Maggie Makar · Michael Sjoding · Finale Doshi-Velez · Jenna Wiens -
2022 Poster: JAWS: Auditing Predictive Uncertainty Under Covariate Shift »
Drew Prinster · Anqi Liu · Suchi Saria -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : Invited talk (ML) - Rich Caruana »
Rich Caruana -
2021 : LAF | Panel discussion »
Aaron Snoswell · Jake Goldenfein · Finale Doshi-Velez · Evi Micha · Ivana Dusparic · Jonathan Stray -
2021 : LAF | The Role of Explanation in RL Legitimacy, Accountability, and Feedback »
Finale Doshi-Velez -
2021 : Invited talk #2: Finale Doshi-Velez »
Finale Doshi-Velez -
2021 : Discussion: Aleksander Mądry, Ernest Mwebaze, Suchi Saria »
Aleksander Madry · Ernest Mwebaze · Suchi Saria -
2021 : Dataset Shifts: 8 Years of Going from Practice to Theory to Policy and Future Directions »
Suchi Saria -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Poster: Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Making by Reinforcement Learning »
Kai Wang · Sanket Shah · Haipeng Chen · Andrew Perrault · Finale Doshi-Velez · Milind Tambe -
2020 : Batch RL Models Built for Validation »
Finale Doshi-Velez -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Contributed Talk 1: Fairness Under Partial Compliance »
Jessica Dai · Zachary Lipton -
2020 : Q & A and Panel Session with Tom Mitchell, Jenn Wortman Vaughan, Sanjoy Dasgupta, and Finale Doshi-Velez »
Tom Mitchell · Jennifer Wortman Vaughan · Sanjoy Dasgupta · Finale Doshi-Velez · Zachary Lipton -
2020 Workshop: HAMLETS: Human And Model in the Loop Evaluation and Training Strategies »
Divyansh Kaushik · Bhargavi Paranjape · Forough Arabshahi · Yanai Elazar · Yixin Nie · Max Bartolo · Polina Kirichenko · Pontus Lars Erik Saito Stenetorp · Mohit Bansal · Zachary Lipton · Douwe Kiela -
2020 : Morning keynote »
Hanna Wallach · Rosie Campbell -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Poster: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Spotlight: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Poster: A Unified View of Label Shift Estimation »
Saurabh Garg · Yifan Wu · Sivaraman Balakrishnan · Zachary Lipton -
2020 Poster: Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs »
Jianzhun Du · Joseph Futoma · Finale Doshi-Velez -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Invited talk #4 »
Finale Doshi-Velez -
2019 : Finale Doshi-Velez: Combining Statistical methods with Human Input for Evaluation and Optimization in Batch Settings »
Finale Doshi-Velez -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift »
Stephan Rabanser · Stephan Günnemann · Zachary Lipton -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2019 Poster: Learning Robust Global Representations by Penalizing Local Predictive Power »
Haohan Wang · Songwei Ge · Zachary Lipton · Eric Xing -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Invited Talk 1 »
Zachary Lipton -
2018 : Finale Doshi-Velez »
Finale Doshi-Velez -
2018 : Rich Caruana, "Friends Don’t Let Friends Deploy Black-Box Models: The Importance of Intelligibility in Machine Learning" »
Rich Caruana -
2018 : Research Panel »
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach -
2018 : Charles Sutton »
Charles Sutton -
2018 : Hanna Wallach - Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? »
Hanna Wallach -
2018 : Finale Doshi-Velez »
Finale Doshi-Velez -
2018 : Rich Caruna - Justice May Be Blind But It Shouldn’t Be Opaque: The Risk of Using Black-Box Models in Healthcare & Criminal Justice »
Rich Caruana -
2018 : Zachary Lipton »
Zachary Lipton -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Spotlight: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Poster: Representation Balancing MDPs for Off-policy Policy Evaluation »
Yao Liu · Omer Gottesman · Aniruddh Raghu · Matthieu Komorowski · Aldo Faisal · Finale Doshi-Velez · Emma Brunskill -
2018 Poster: Does mitigating ML's impact disparity require treatment disparity? »
Zachary Lipton · Julian McAuley · Alexandra Chouldechova -
2018 Poster: HOUDINI: Lifelong Learning as Program Synthesis »
Lazar Valkov · Dipak Chaudhari · Akash Srivastava · Charles Sutton · Swarat Chaudhuri -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Invited Talk 6 »
Rich Caruana -
2017 : Finale Doshi-Velez »
Finale Doshi-Velez -
2017 : Automatic Model Selection in BNNs with Horseshoe Priors »
Finale Doshi-Velez -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 : Coffee break and Poster Session I »
Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros -
2017 : Contributed talk: Beyond Sparsity: Tree-based Regularization of Deep Models for Interpretability »
Mike Wu · Sonali Parbhoo · Finale Doshi-Velez -
2017 : Poster Spotlights »
Francesco Locatello · Ari Pakman · Da Tang · Thomas Rainforth · Zalan Borsos · Marko Järvenpää · Eric Nalisnick · Gabriele Abbati · XIAOYU LU · Jonathan Huggins · Rachit Singh · Rui Luo -
2017 : Invited talk: The Role of Explanation in Holding AIs Accountable »
Finale Doshi-Velez -
2017 : Invited talk: Is interpretability and explainability enough for safe and reliable decision making? »
Suchi Saria -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2017 Poster: VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning »
Akash Srivastava · Lazar Valkov · Chris Russell · Michael Gutmann · Charles Sutton -
2017 Poster: Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes »
Taylor Killian · Samuel Daulton · Finale Doshi-Velez · George Konidaris -
2017 Oral: Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes »
Taylor Killian · Samuel Daulton · Finale Doshi-Velez · George Konidaris -
2016 : Estimating What-if Outcomes for Targeting Interventions in a Clinical Setting »
Suchi Saria -
2016 : Probabilistic structure discovery in time series data »
David Janz · Brooks Paige · Thomas Rainforth · Jan-Willem van de Meent -
2016 : BNNs for RL: A Success Story and Open Questions »
Finale Doshi-Velez -
2016 Workshop: Towards an Artificial Intelligence for Data Science »
Charles Sutton · James Geddes · Zoubin Ghahramani · Padhraic Smyth · Chris Williams -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Poster: Flexible Models for Microclustering with Application to Entity Resolution »
Brenda Betancourt · Giacomo Zanella · Jeffrey Miller · Hanna Wallach · Abbas Zaidi · Beka Steorts -
2016 Tutorial: ML Foundations and Methods for Precision Medicine and Healthcare »
Suchi Saria · Peter Schulam -
2015 Workshop: Bayesian Nonparametrics: The Next Generation »
Tamara Broderick · Nick Foti · Aaron Schein · Alex Tank · Hanna Wallach · Sinead Williamson -
2015 Workshop: Machine Learning From and For Adaptive User Technologies: From Active Learning & Experimentation to Optimization & Personalization »
Joseph Jay Williams · Yasin Abbasi Yadkori · Finale Doshi-Velez -
2015 : The risk of deploying unintelligible models in healthcare »
Rich Caruana -
2015 : Data Driven Phenotyping for Diseases »
Finale Doshi-Velez -
2015 Workshop: Machine Learning For Healthcare (MLHC) »
Theofanis Karaletsos · Rajesh Ranganath · Suchi Saria · David Sontag -
2015 Poster: Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction »
Been Kim · Julie A Shah · Finale Doshi-Velez -
2015 Poster: Latent Bayesian melding for integrating individual and population models »
Mingjun Zhong · Nigel Goddard · Charles Sutton -
2015 Spotlight: Latent Bayesian melding for integrating individual and population models »
Mingjun Zhong · Nigel Goddard · Charles Sutton -
2014 Poster: Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models »
Yichuan Zhang · Charles Sutton -
2014 Poster: Do Deep Nets Really Need to be Deep? »
Jimmy Ba · Rich Caruana -
2014 Poster: Signal Aggregate Constraints in Additive Factorial HMMs, with Application to Energy Disaggregation »
Mingjun Zhong · Nigel Goddard · Charles Sutton -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Poster: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2013 Spotlight: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2012 Poster: Topic-Partitioned Multinetwork Embeddings »
Peter Krafft · Juston S Moore · Hanna Wallach · Bruce Desmarais -
2012 Poster: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2012 Spotlight: Continuous Relaxations for Discrete Hamiltonian Monte Carlo »
Zoubin Ghahramani · Yichuan Zhang · Charles Sutton · Amos Storkey -
2011 Workshop: 2nd Workshop on Computational Social Science and the Wisdom of Crowds »
Winter Mason · Jennifer Wortman Vaughan · Hanna Wallach -
2011 Poster: Quasi-Newton Methods for Markov Chain Monte Carlo »
Yichuan Zhang · Charles Sutton -
2010 Workshop: Computational Social Science and the Wisdom of Crowds »
Jennifer Wortman Vaughan · Hanna Wallach -
2010 Session: Spotlights Session 7 »
Rich Caruana -
2010 Session: Oral Session 8 »
Rich Caruana -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum