Timezone: »
Author Information
Jianyu Wang (Carnegie Mellon University)
Denis Gudovskiy (Panasonic Beta Research Lab)
Ziheng Jiang (University of Washington)
Michael Kaufmann (IBM Research, Karlsruhe Institute of Technology)
Andreea Anghel (IBM Research)
James Bradbury (Google Brain)
Nikolas Ioannou (IBM Research)
Nitin Agrawal (Samsung Research)
Emma Tosch (University of Massachusetts Amherst)
Gyeongin Yu (Seoul National University)
Keno Fischer (Julia Computing Inc)
Jarrett Revels (MIT)
Giuseppe Siracusano (NEC Laboratories Europe)
Yaoqing Yang (Carnegie Mellon University)
Jeff Johnson (Facebook AI Research)
Yang You (UC Berkeley)
Hector Yuen (Facebook)
Chris Ying (Google Brain)
Honglei Liu (Facebook Conversational AI)
Nikoli Dryden (University of Illinois at Urbana-Champaign)
Xiangxi Mo (UC Berkeley)
Yangzihao Wang (Tencent Inc.)
Yangzihao is a software engineer at Tencent (Beijing) working on AI platform and AutoML. Before that he worked as a software engineer at Google Brain on Tensorflow. He graduated from UC Davis in December 2016. During his PhD years, he was fortunate to work with Prof. John Owens on various research topics: 1) structure of parallelism and locality in irregular algorithms such as graph algorithms on the GPU; 2) parallel programming model for graph analytics; and 3) large-scale graph processing and data analysis system. He also did internships at AMD Research, DARPA, and Google. Before UC Davis, Yangzihao received his B.E. degree in Computer Science and M.E. degree in Software Engineering both from Beijing University of Aeronautics and Astronautics. During his Master years, Yangzihao worked on several projects on water simulation, collision detection, and distributed rendering system.
Amit Juneja (IBM)
Micah Smith (MIT)
Qian Yu (University of Southern California)
pramod gupta (Google DeepMind)
Deepak Narayanan (Stanford University)
Keshav Santhanam (Stanford University)
Tim Capes (SAIC Toronto)
Abdul Dakkak (UIUC)
Norman Mu (UC Berkeley)
Ke Deng (Microsoft)
Liam Li (Carnegie Mellon University)
Joao Carreira (UC Berkeley)
UC Berkeley RISELab PhD Student
Luis Remis (Intel Labs)
Deepti Raghavan (Stanford University)
Una-May O'Reilly (Massachusetts Institute of Technology)
Amanpreet Singh (Facebook AI Research)
Mahmoud (Mido) Assran (Facebook AI Research / McGill University)
## Byte-sized bio PhD Student, supervised by Prof. Michael Rabbat, working on developing multi-agent optimization algorithms for large-scale and distributed machine learning. > We're all here on this earth to help others, what on earth the others are here for, I have no idea. > -- W.H. Auden ## More about research Many practical machine learning systems are distributed across multiple machines... either because the data is naturally distributed, or because of the scale of the task. I'm really interested in developing distributed optimization algorithms for training large-scale machine learning systems; whether that be a high performance computing cluster, a controlled production environment, or a multi-agent system. So far, my research has utilized tools from the control systems literature and adapted them to the machine learning setting with theoretical convergence guarantees and strong empirical evidence. Here are some of our recent works :) [1]. Stochastic Gradient Push for Distributed Deep Learning [2]. Asynchronous Subgradient Push [3]. An Empirical Comparison of Multi-Agent Optimization Algorithms
Eugene Wu (Columbia University)
Eytan Bakshy (Facebook)
Jinliang Wei (Carnegie Mellon University)
Michael Innes (Julia Computing)
Viral Shah (Julia Computing, Inc.)
Haibin Lin (Amazon.com Inc)
Conrad Sanderson (University of Queensland)
Ryan Curtin (RelationalAI)
Marcus Edel (Free University of Berlin)
More from the Same Authors
-
2020 : Surrogates for Stiff Nonlinear Systems using Continuous Time Echo State Networks »
Ranjan Anantharaman · Christopher Rackauckas · Viral Shah -
2022 Poster: SAPipe: Staleness-Aware Pipeline for Data Parallel DNN Training »
Yangrui Chen · Cong Xie · Meng Ma · Juncheng Gu · Yanghua Peng · Haibin Lin · Chuan Wu · Yibo Zhu -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: SAPipe: Staleness-Aware Pipeline for Data Parallel DNN Training »
Yangrui Chen · Cong Xie · Meng Ma · Juncheng Gu · Yanghua Peng · Haibin Lin · Chuan Wu · Yibo Zhu -
2022 : Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training »
Yang You -
2022 Poster: Convergent Representations of Computer Programs in Human and Artificial Neural Networks »
Shashank Srikant · Ben Lipkin · Anna Ivanova · Evelina Fedorenko · Una-May O'Reilly -
2022 Poster: Random Sharpness-Aware Minimization »
Yong Liu · Siqi Mai · Minhao Cheng · Xiangning Chen · Cho-Jui Hsieh · Yang You -
2021 : Diffractor.jl: High Level, High Performance AD for Julia »
Keno Fischer -
2021 Poster: Terra: Imperative-Symbolic Co-Execution of Imperative Deep Learning Programs »
Taebum Kim · Eunji Jeong · Geon-Woo Kim · Yunmo Koo · Sehoon Kim · Gyeongin Yu · Byung-Gon Chun -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Rethinking Neural Operations for Diverse Tasks »
Nicholas Roberts · Mikhail Khodak · Tri Dao · Liam Li · Christopher Ré · Ameet Talwalkar -
2021 Poster: Human-Adversarial Visual Question Answering »
Sasha Sheng · Amanpreet Singh · Vedanuj Goswami · Jose Magana · Tristan Thrush · Wojciech Galuba · Devi Parikh · Douwe Kiela -
2021 Poster: Piper: Multidimensional Planner for DNN Parallelization »
Jakub Tarnawski · Deepak Narayanan · Amar Phanishayee -
2020 Poster: Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization »
Jianyu Wang · Qinghua Liu · Hao Liang · Gauri Joshi · H. Vincent Poor -
2020 Poster: SnapBoost: A Heterogeneous Boosting Machine »
Thomas Parnell · Andreea Anghel · Małgorzata Łazuka · Nikolas Ioannou · Sebastian Kurella · Peshal Agarwal · Nikolaos Papandreou · Haralampos Pozidis -
2020 Poster: Minimax Regret of Switching-Constrained Online Convex Optimization: No Phase Transition »
Lin Chen · Qian Yu · Hannah Lawrence · Amin Karbasi -
2020 Poster: The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes »
Douwe Kiela · Hamed Firooz · Aravind Mohan · Vedanuj Goswami · Amanpreet Singh · Pratik Ringshia · Davide Testuggine -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 : Posters and Coffee »
Sameer Kumar · Tomasz Kornuta · Oleg Bakhteev · Hui Guan · Xiaomeng Dong · Minsik Cho · Sören Laue · Theodoros Vasiloudis · Andreea Anghel · Erik Wijmans · Zeyuan Shang · Oleksii Kuchaiev · Ji Lin · Susan Zhang · Ligeng Zhu · Beidi Chen · Vinu Joseph · Jialin Ding · Jonathan Raiman · Ahnjae Shin · Vithursan Thangarasa · Anush Sankaran · Akhil Mathur · Martino Dazzi · Markus Löning · Darryl Ho · Emanuel Zgraggen · Supun Nakandala · Tomasz Kornuta · Rita Kuznetsova -
2019 Poster: PyTorch: An Imperative Style, High-Performance Deep Learning Library »
Adam Paszke · Sam Gross · Francisco Massa · Adam Lerer · James Bradbury · Gregory Chanan · Trevor Killeen · Zeming Lin · Natalia Gimelshein · Luca Antiga · Alban Desmaison · Andreas Kopf · Edward Yang · Zachary DeVito · Martin Raison · Alykhan Tejani · Sasank Chilamkurthy · Benoit Steiner · Lu Fang · Junjie Bai · Soumith Chintala -
2019 Poster: SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems »
Alex Wang · Yada Pruksachatkun · Nikita Nangia · Amanpreet Singh · Julian Michael · Felix Hill · Omer Levy · Samuel Bowman -
2019 Demonstration: Smart Home Appliances: Chat with your Fridge »
Denis Gudovskiy · Alec Hodgkinson · Stefano Alletto · Luca Rigazio -
2019 Spotlight: SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems »
Alex Wang · Yada Pruksachatkun · Nikita Nangia · Amanpreet Singh · Julian Michael · Felix Hill · Omer Levy · Samuel Bowman -
2019 Poster: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2019 Spotlight: SySCD: A System-Aware Parallel Coordinate Descent Algorithm »
Nikolas Ioannou · Celestine Mendler-Dünner · Thomas Parnell -
2018 : mlpack open-source machine learning library and community »
Marcus Edel -
2018 Workshop: Machine Learning Open Source Software 2018: Sustainable communities »
Heiko Strathmann · Viktor Gal · Ryan Curtin · Antti Honkela · Sergey Lisitsyn · Cheng Soon Ong -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 Poster: Snap ML: A Hierarchical Framework for Machine Learning »
Celestine Dünner · Thomas Parnell · Dimitrios Sarigiannis · Nikolas Ioannou · Andreea Anghel · Gummadi Ravi · Madhusudanan Kandasamy · Haralampos Pozidis -
2017 Poster: Learned in Translation: Contextualized Word Vectors »
Bryan McCann · James Bradbury · Caiming Xiong · Richard Socher -
2017 Poster: Coded Distributed Computing for Inverse Problems »
Yaoqing Yang · Pulkit Grover · Soummya Kar -
2016 Poster: Asynchronous Parallel Greedy Coordinate Descent »
Yang You · Xiangru Lian · Ji Liu · Hsiang-Fu Yu · Inderjit Dhillon · James Demmel · Cho-Jui Hsieh