Timezone: »
Poster Session
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg
Author Information
Sujay Sanghavi (UT-Austin)
Vatsal Shah (The University of Texas at Austin)
Yanyao Shen (UT Austin)
Tianchen Zhao (University of Michigan)
Yuandong Tian (Facebook AI Research)
Tomer Galanti (Tel Aviv University)
Mufan Li (University of Toronto)
Gilad Cohen (Tel Aviv University)
Daniel Rothchild (UC Berkeley)
Aristide Baratin (Université de Montreal)
Devansh Arpit (MILA, UdeM)
Vagelis Papalexakis (University of California Riverside)
Michael Perlmutter (Michigan State University)
Ashok Vardhan Makkuva (University of Illinois at Urbana-Champaign)
Pim de Haan (University of Amsterdam, visiting at UC Berkeley)
Yingyan Lin (Rice University)
The assistant professor working on energy-efficient machine learning systems
Wanmo Kang (KAIST)
Cheolhyoung Lee (KAIST)
Hao Shen (fortiss GmbH / Technical University of Munich)
Sho Yaida (Facebook AI Research)
Dan Roberts (Facebook AI Research)
Nadav Cohen (Institute for Advanced Study)
Philippe Casgrain (University of Toronto)
Dejiao Zhang (University of Michigan, Ann Arbor)
Tengyu Ma (Stanford University)
Avinash Ravichandran (Amazon)
Julian Emilio Salazar (Amazon AI)
Bo Li (University of Illinois at Urbana–Champaign (UIUC))
Davis Liang (Amazon AI)
Christopher Wong (Rice University)
Glen Bigan Mbeng (International School for Advanced Studies (SISSA), Trieste)
Animesh Garg (Nvidia Research)
I am a Assistant Professor of Computer Science at University of Toronto and a Faculty Member at the Vector Institute. I work on machine learning for perception and control in robotics.
More from the Same Authors
-
2021 Spotlight: Uniform Sampling over Episode Difficulty »
Sébastien Arnold · Guneet Dhillon · Avinash Ravichandran · Stefano Soatto -
2021 Spotlight: Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning »
Colin Wei · Sang Michael Xie · Tengyu Ma -
2021 : Calibrated Ensembles: A Simple Way to Mitigate ID-OOD Accuracy Tradeoffs »
Ananya Kumar · Aditi Raghunathan · Tengyu Ma · Percy Liang -
2021 : Self-supervised Learning is More Robust to Dataset Imbalance »
Hong Liu · Jeff Z. HaoChen · Adrien Gaidon · Tengyu Ma -
2021 : Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning with Actor Rectification »
Ling Pan · Longbo Huang · Tengyu Ma · Huazhe Xu -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World Trifinger »
Arthur Allshire · Mayank Mittal · Varun Lodaya · Viktor Makoviychuk · Denys Makoviichuk · Felix Widmaier · Manuel Wuethrich · Stefan Bauer · Ankur Handa · Animesh Garg -
2021 : Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows »
Pim de Haan · Roberto Bondesan -
2021 : Laplace Approximation with Diagonalized Hessian for Over-parameterized Neural Networks »
Ming Gui · Ziqing Zhao · Tianming Qiu · Hao Shen -
2022 : Differentially Private Federated Learning with Normalized Updates »
Rudrajit Das · Abolfazl Hashemi · Sujay Sanghavi · Inderjit Dhillon -
2022 : Understanding Curriculum Learning in Policy Optimization for Online Combinatorial Optimization »
Runlong Zhou · Yuandong Tian · YI WU · Simon Du -
2022 : Identifying Witnesses to Noise Transients in Ground-based Gravitational-wave Observations using Auxiliary Channels with Matrix and Tensor Factorization Techniques »
Rutuja Gurav · Vagelis Papalexakis · Gabriele Vajente · Jonathan Richardson · Barry Barish -
2022 : Efficient Planning in a Compact Latent Action Space »
zhengyao Jiang · Tianjun Zhang · Michael Janner · Yueying (Lisa) Li · Tim Rocktäschel · Edward Grefenstette · Yuandong Tian -
2022 : Deconfounded Imitation Learning »
Risto Vuorio · Pim de Haan · Johann Brehmer · Hanno Ackermann · Daniel Dijkman · Taco Cohen -
2023 Poster: Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 Poster: Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer »
Yuandong Tian · Yiping Wang · Beidi Chen · Simon Du -
2023 Poster: EDGI: Equivariant Diffusion for Planning with Embodied Agents »
Johann Brehmer · Joey Bose · Pim de Haan · Taco Cohen -
2023 Poster: Your representations are in the network: composable and parallel adaptation for large scale models »
Yonatan Dukler · Alessandro Achille · Hao Yang · Varsha Vivek · Luca Zancato · Benjamin Bowman · Avinash Ravichandran · Charless Fowlkes · Ashwin Swaminathan · Stefano Soatto -
2023 Poster: H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models »
Zhenyu Zhang · Ying Sheng · Tianyi Zhou · Tianlong Chen · Lianmin Zheng · Ruisi Cai · Zhao Song · Yuandong Tian · Christopher Ré · Clark Barrett · Zhangyang Wang · Beidi Chen -
2023 Poster: Towards a Unified Framework of Contrastive Learning for Disentangled Representations »
Stefan Matthes · Zhiwei Han · Hao Shen -
2023 Poster: Reverse Engineering Self-Supervised Learning »
Ido Ben-Shaul · Ravid Shwartz-Ziv · Tomer Galanti · Shai Dekel · Yann LeCun -
2023 Poster: Geometric Algebra Transformers »
Johann Brehmer · Pim de Haan · Sönke Behrends · Taco Cohen -
2023 Poster: Logarithmic Bayes Regret Bounds »
Alexia Atsidakou · Branislav Kveton · Sumeet Katariya · Constantine Caramanis · Sujay Sanghavi -
2023 Poster: Norm-based Generalization Bounds for Sparse Neural Networks »
Tomer Galanti · Mengjia Xu · Liane Galanti · Tomaso Poggio -
2022 : Bo Li: Trustworthy Machine Learning via Learning with Reasoning »
Bo Li -
2022 Spotlight: Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization »
Devansh Arpit · Huan Wang · Yingbo Zhou · Caiming Xiong -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 Panel: Panel 4B-3: Efficient Methods for… & Understanding Deep Contrastive… »
Peng Zhao · Yuandong Tian -
2022 Poster: Minimax Regret for Cascading Bandits »
Daniel Vial · Sujay Sanghavi · Sanjay Shakkottai · R. Srikant -
2022 Poster: Can Hybrid Geometric Scattering Networks Help Solve the Maximum Clique Problem? »
Yimeng Min · Frederik Wenkel · Michael Perlmutter · Guy Wolf -
2022 Poster: The Neural Covariance SDE: Shaped Infinite Depth-and-Width Networks at Initialization »
Mufan Li · Mihai Nica · Dan Roy -
2022 Poster: Toward Understanding Privileged Features Distillation in Learning-to-Rank »
Shuo Yang · Sujay Sanghavi · Holakou Rahmanian · Jan Bakus · Vishwanathan S. V. N. -
2022 Poster: DreamShard: Generalizable Embedding Table Placement for Recommender Systems »
Daochen Zha · Louis Feng · Qiaoyu Tan · Zirui Liu · Kwei-Herng Lai · Bhargav Bhushanam · Yuandong Tian · Arun Kejariwal · Xia Hu -
2022 Poster: Semi-supervised Vision Transformers at Scale »
Zhaowei Cai · Avinash Ravichandran · Paolo Favaro · Manchen Wang · Davide Modolo · Rahul Bhotika · Zhuowen Tu · Stefano Soatto -
2022 Poster: Maximum Likelihood Training of Implicit Nonlinear Diffusion Model »
Dongjun Kim · Byeonghu Na · Se Jung Kwon · Dongsoo Lee · Wanmo Kang · Il-chul Moon -
2022 Poster: Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization »
Devansh Arpit · Huan Wang · Yingbo Zhou · Caiming Xiong -
2022 Poster: Weakly supervised causal representation learning »
Johann Brehmer · Pim de Haan · Phillip Lippe · Taco Cohen -
2022 Poster: Understanding Deep Contrastive Learning via Coordinate-wise Optimization »
Yuandong Tian -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: Uniform Sampling over Episode Difficulty »
Sébastien Arnold · Guneet Dhillon · Avinash Ravichandran · Stefano Soatto -
2021 Poster: The future is log-Gaussian: ResNets and their infinite-depth-and-width limit at initialization »
Mufan Li · Mihai Nica · Dan Roy -
2021 Poster: Locality Sensitive Teaching »
Zhaozhuo Xu · Beidi Chen · Chaojian Li · Weiyang Liu · Le Song · Yingyan Lin · Anshumali Shrivastava -
2021 Poster: Drop-DTW: Aligning Common Signal Between Sequences While Dropping Outliers »
Mikita Dvornik · Isma Hadji · Konstantinos Derpanis · Animesh Garg · Allan Jepson -
2021 Poster: Label Noise SGD Provably Prefers Flat Global Minimizers »
Alex Damian · Tengyu Ma · Jason Lee -
2021 Poster: Meta Internal Learning »
Raphael Bensadoun · Shir Gur · Tomer Galanti · Lior Wolf -
2021 Poster: Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations »
Yuping Luo · Tengyu Ma -
2021 Poster: Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration »
Shengjia Zhao · Michael Kim · Roshni Sahoo · Tengyu Ma · Stefano Ermon -
2021 Poster: Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning »
Colin Wei · Sang Michael Xie · Tengyu Ma -
2021 Oral: Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss »
Jeff Z. HaoChen · Colin Wei · Adrien Gaidon · Tengyu Ma -
2021 Poster: Safe Reinforcement Learning by Imagining the Near Future »
Garrett Thomas · Yuping Luo · Tengyu Ma -
2021 Poster: Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss »
Jeff Z. HaoChen · Colin Wei · Adrien Gaidon · Tengyu Ma -
2021 Poster: MagNet: A Neural Network for Directed Graphs »
Xitong Zhang · Yixuan He · Nathan Brugnone · Michael Perlmutter · Matthew Hirn -
2021 Poster: Nearly Horizon-Free Offline Reinforcement Learning »
Tongzheng Ren · Jialian Li · Bo Dai · Simon Du · Sujay Sanghavi -
2021 Poster: Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks »
Yonggan Fu · Qixuan Yu · Yang Zhang · Shang Wu · Xu Ouyang · David Cox · Yingyan Lin -
2021 Poster: Neural Hybrid Automata: Learning Dynamics With Multiple Modes and Stochastic Transitions »
Michael Poli · Stefano Massaroli · Luca Scimeca · Sanghyuk Chun · Seong Joon Oh · Atsushi Yamashita · Hajime Asama · Jinkyoo Park · Animesh Garg -
2021 Poster: Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature »
Kefan Dong · Jiaqi Yang · Tengyu Ma -
2021 Poster: Dynamic Bottleneck for Robust Self-Supervised Exploration »
Chenjia Bai · Lingxiao Wang · Lei Han · Animesh Garg · Jianye Hao · Peng Liu · Zhaoran Wang -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 Poster: Predicting Training Time Without Training »
Luca Zancato · Alessandro Achille · Avinash Ravichandran · Rahul Bhotika · Stefano Soatto -
2020 Poster: FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training »
Yonggan Fu · Haoran You · Yang Zhao · Yue Wang · Chaojian Li · Kailash Gopalakrishnan · Zhangyang Wang · Yingyan Lin -
2020 Poster: On the Modularity of Hypernetworks »
Tomer Galanti · Lior Wolf -
2020 Poster: On Infinite-Width Hypernetworks »
Etai Littwin · Tomer Galanti · Lior Wolf · Greg Yang -
2020 Oral: On the Modularity of Hypernetworks »
Tomer Galanti · Lior Wolf -
2020 Poster: ShiftAddNet: A Hardware-Inspired Deep Network »
Haoran You · Xiaohan Chen · Yongan Zhang · Chaojian Li · Sicheng Li · Zihao Liu · Zhangyang Wang · Yingyan Lin -
2019 : Contributed Session - Spotlight Talks »
Jonathan Frankle · David Schwab · Ari Morcos · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · YiDing Jiang · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Sho Yaida · Muqiao Yang -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 : Tengyu Ma, "Designing Explicit Regularizers for Deep Models" »
Tengyu Ma -
2019 : Poster Session »
Lili Yu · Aleksei Kroshnin · Alex Delalande · Andrew Carr · Anthony Tompkins · Aram-Alexandre Pooladian · Arnaud Robert · Ashok Vardhan Makkuva · Aude Genevay · Bangjie Liu · Bo Zeng · Charlie Frogner · Elsa Cazelles · Esteban G Tabak · Fabio Ramos · François-Pierre PATY · Georgios Balikas · Giulio Trigila · Hao Wang · Hinrich Mahler · Jared Nielsen · Karim Lounici · Kyle Swanson · Mukul Bhutani · Pierre Bréchet · Piotr Indyk · samuel cohen · Stefanie Jegelka · Tao Wu · Thibault Sejourne · Tudor Manole · Wenjun Zhao · Wenlin Wang · Wenqi Wang · Yonatan Dukler · Zihao Wang · Chaosheng Dong -
2019 Poster: Interaction Hard Thresholding: Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space »
Shuo Yang · Yanyao Shen · Sujay Sanghavi -
2019 Poster: How to Initialize your Network? Robust Initialization for WeightNorm & ResNets »
Devansh Arpit · Víctor Campos · Yoshua Bengio -
2019 Poster: E2-Train: Training State-of-the-art CNNs with Over 80% Less Energy »
Ziyu Jiang · Yue Wang · Xiaohan Chen · Pengfei Xu · Yang Zhao · Yingyan Lin · Zhangyang Wang -
2019 Poster: A Latent Variational Framework for Stochastic Optimization »
Philippe Casgrain -
2019 Poster: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alex Dimakis -
2019 Spotlight: Sparse Logistic Regression Learns All Discrete Pairwise Graphical Models »
Shanshan Wu · Sujay Sanghavi · Alex Dimakis -
2019 Poster: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Iterative Least Trimmed Squares for Mixed Linear Regression »
Yanyao Shen · Sujay Sanghavi -
2019 Oral: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Blocking Bandits »
Soumya Basu · Rajat Sen · Sujay Sanghavi · Sanjay Shakkottai -
2019 Poster: Learning Distributions Generated by One-Layer ReLU Networks »
Shanshan Wu · Alex Dimakis · Sujay Sanghavi -
2019 Poster: Communication-efficient Distributed SGD with Sketching »
Nikita Ivkin · Daniel Rothchild · Enayat Ullah · Vladimir Braverman · Ion Stoica · Raman Arora -
2018 : Contributed Talk 2 »
Michael Perlmutter -
2018 : Coffee Break and Poster Session I »
Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 : A3T: Adversarially Augmented Adversarial Training »
Aristide Baratin · Simon Lacoste-Julien · Yoshua Bengio · Akram Erraqabi -
2017 Poster: On the Optimization Landscape of Tensor Decompositions »
Rong Ge · Tengyu Ma -
2017 Oral: On the Optimization Landscape of Tensor Decompositions »
Rong Ge · Tengyu Ma -
2016 Poster: Single Pass PCA of Matrix Products »
Shanshan Wu · Srinadh Bhojanapalli · Sujay Sanghavi · Alex Dimakis -
2016 Oral: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: A Non-generative Framework and Convex Relaxations for Unsupervised Learning »
Elad Hazan · Tengyu Ma -
2016 Poster: Normalized Spectral Map Synchronization »
Yanyao Shen · Qixing Huang · Nati Srebro · Sujay Sanghavi -
2015 Poster: Convergence Rates of Active Learning for Maximum Likelihood Estimation »
Kamalika Chaudhuri · Sham Kakade · Praneeth Netrapalli · Sujay Sanghavi -
2015 Poster: Sum-of-Squares Lower Bounds for Sparse PCA »
Tengyu Ma · Avi Wigderson -
2014 Poster: On Communication Cost of Distributed Statistical Estimation and Dimensionality »
Ankit Garg · Tengyu Ma · Huy Nguyen -
2014 Poster: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Oral: On Communication Cost of Distributed Statistical Estimation and Dimensionality »
Ankit Garg · Tengyu Ma · Huy Nguyen -
2014 Spotlight: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Poster: Greedy Subspace Clustering »
Dohyung Park · Constantine Caramanis · Sujay Sanghavi -
2013 Poster: Phase Retrieval using Alternating Minimization »
Praneeth Netrapalli · Prateek Jain · Sujay Sanghavi -
2012 Poster: Clustering Sparse Graphs »
Yudong Chen · Sujay Sanghavi · Huan Xu -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Robust PCA via Outlier Pursuit »
Huan Xu · Constantine Caramanis · Sujay Sanghavi -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2007 Spotlight: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Linear programming analysis of loopy belief propagation for weighted matching »
Sujay Sanghavi · Dmitry Malioutov · Alan S Willsky