Timezone: »
Author Information
Kyle H Ambert (Intel)
Kyle is Senior Data scientist at Intel Nervana, where he uses machine learning and deep learning methods to solve real-world analytical problems. He has a B.A. in Biological Psychology from Wheaton College, and a Ph.D. in Bioinformatics from Oregon Health & Science University, where his research focused on scalable machine learning-based methods for unstructured data curation and the application of artificial intelligence in the Neurosciences. At Intel Nervana, his team creates deep learning solution prototypes and researches optimization strategies for deep learning networks for text analytics, natural language processing, and image recognition.
Brandon Araki (Massachusetts Institute of Technology)
Xiya Cao (Columbia University)
Sungjoon Choi (Disney Research)
Hao(Jackson) Cui (Tufts University)
Jonas Degrave (Deepmind)
Yaqi Duan (Princeton University)
Mattie Fellows (University of Oxford)
Carlos Florensa (UC Berkeley)
Karan Goel (Stanford University)
Aditya Gopalan (Indian Institute of Science)
Ming-Xu Huang (National Chiao Tung University)
Jonathan Hunt (DeepMind)
Cyril Ibrahim (Element AI)
Brian Ichter (Google Brain)
Maximilian Igl (University of Oxford)
Zheng Tracy Ke (Harvard University)
Igor Kiselev (University of Waterloo)
Anuj Mahajan (Phd student, University of Oxford)
Arash Mehrjou (Max Planck Institute)
Karl Pertsch (University of Southern California)
Alexandre Piche (Mila)
Nicholas Rhinehart (Carnegie Mellon University)
Nick Rhinehart is a Postdoctoral Scholar in the Electrical Engineering and Computer Science Department at the University of California, Berkeley, where he works with Sergey Levine. His work focuses on fundamental and applied research in machine learning and computer vision for behavioral forecasting and control in complex environments, with an emphasis on imitation learning, reinforcement learning, and deep learning methods. Applications of his work include autonomous vehicles and first-person video. He received a Ph.D. in Robotics from Carnegie Mellon University with Kris Kitani, and B.S. and B.A. degrees in Engineering and Computer Science from Swarthmore College. Nick's work has been honored with a Best Paper Award at the ICML 2019 Workshop on AI for Autonomous Driving and a Best Paper Honorable Mention Award at ICCV 2017. His work has been published at a variety of top-tier venues in machine learning, computer vision, and robotics, including AAMAS, CoRL, CVPR, ECCV, ICCV, ICLR, ICML, ICRA, NeurIPS, and PAMI. Nick co-organized the workshop on Machine Learning in Autonomous Driving at NeurIPS 2019, the workshop on Imitation, Intent, and Interaction at ICML 2019, and the Tutorial on Inverse RL for Computer Vision at CVPR 2018.
Thomas Ringstrom (University of Minnesota)
Reazul Hasan Russel (University of New Hampshire)
I'm a PhD student at the computer science department at University of New Hampshire. I am interested about applying Reinforcement Learning into real world problems with safety and robustness guarantees.
Oleh Rybkin (University of Pennsylvania)
I am a Ph.D. student in the GRASP laboratory at the University of Pennsylvania, where I work on computer vision and deep learning with Kostas Daniilidis. Previously, I received my bachelor's degree from Czech Technical University in Prague, where I was advised by Tomas Pajdla. I have spent two summers at INRIA and TiTech, with Josef Sivic and Akihiko Torii respectively. I am working in artificial intelligence, computer vision, and robotics. More specifically, my main interest is machine understanding of intuitive physics for real-world robotic manipulation. My latest work has been on motion understanding via video prediction. During my bachelor's, I also worked on camera geometry for structure from motion.
Ion Stoica (UC Berkeley)
Sharad Vikram (UCSD)
Angelina Wang (UC Berkeley)
Ting-Han Wei (National Chiao Tung University)
Abigail H Wen (Intel Corporation)
Abigail Hing Wen is legal lead for Intel Capital’s artificial intelligence investments and strategic transactions focusing on emerging AI technologies and the greater AI ecosystem. She partners closely with investors and has worked with more than a hundred Silicon Valley startups over their life cycle, from incorporation to IPO or acquisition. Exemplary transactions include Intel’s $4.1B investment in ASML and $740M in Cloudera. She serves as Intel’s board observer for Two Bit Circus, a VR entertainment company based in LA. Other projects include training of Intel Capital’s board directors, the $125M Diversity Fund for underrepresented tech entrepreneurs and Intel’s Ed Tech accelerator and iLabs. Prior to joining Intel in 2012, Abigail advised clients on Wall Street and in DC with the corporate group of Sullivan & Cromwell LLP, clerked on the US Court of Appeals for the DC Circuit and worked on tech and innovation policy for the Senate Judiciary Committee. She holds a JD from Columbia and BA in government/international relations from Harvard. She has written a novel on AI exploring ethical questions and technology and speaks on AI and investing at conferences.
I-Chen Wu (National Chiao Tung University)
I-Chen Wu is with the Department of Computer Science, at National Chiao Tung University. He received his B.S. in Electronic Engineering from National Taiwan University (NTU), M.S. in Computer Science from NTU, and Ph.D. in Computer Science from Carnegie-Mellon University, in 1982, 1984 and 1993, respectively. He serves in the editorial board of the IEEE Transactions on Computational Intelligence and AI in Games and ICGA Journal. He also serves as the vice president of International Computer Games Association, and served as the president of the Taiwanese Association for Artificial Intelligence in 2015-2016. His research interests include computer games, deep learning, and reinforcement learning. Dr. Wu introduced the new game, Connect6, a kind of six-in-a-row game. Since then, Connect6 has become a tournament item in Computer Olympiad. He led a team developing various game playing programs, winning over 50 gold medals in international tournaments, including Computer Olympiad. He wrote over 100 papers, and served as chairs and committee in over 30 academic conferences and organizations, including the conference chair of IEEE CIG conference 2015.
Zhengwei Wu (Baylor College of Medicine, Rice University)
Linhai Xie (University of Oxford)
Dinghan Shen (Duke University)
More from the Same Authors
-
2021 : TenSet: A Large-scale Program Performance Dataset for Learned Tensor Compilers »
Lianmin Zheng · Ruochen Liu · Junru Shao · Tianqi Chen · Joseph Gonzalez · Ion Stoica · Ameer Haj-Ali -
2021 : Personalized Benchmarking with the Ludwig Benchmarking Toolkit »
Avanika Narayan · Piero Molino · Karan Goel · Willie Neiswanger · Christopher Ré -
2021 Spotlight: Bayesian Bellman Operators »
Mattie Fellows · Kristian Hartikainen · Shimon Whiteson -
2021 : MESA: Offline Meta-RL for Safe Adaptation and Fault Tolerance »
Michael Luo · Ashwin Balakrishna · Brijen Thananjeyan · Suraj Nair · Julian Ibarz · Jie Tan · Chelsea Finn · Ion Stoica · Ken Goldberg -
2021 : Using Dense Object Descriptors for Picking Cluttered General Objects with Reinforcement Learning »
Hoang-Giang Cao · Weihao Zeng · I-Chen Wu -
2021 : Beyond Target Networks: Improving Deep $Q$-learning with Functional Regularization »
Alexandre Piche · Joseph Marino · Gian Maria Marconi · Valentin Thomas · Chris Pal · Mohammad Emtiyaz Khan -
2021 : Hybrid Imitative Planning with Geometric and Predictive Costs in Offroad Environments »
Daniel Shin · Dhruv Shah · Ali Agha · Nicholas Rhinehart · Sergey Levine -
2022 : Can Large Language Models Build Causal Graphs? »
Stephanie Long · Tibor Schuster · Alexandre Piche -
2022 : Implicit Offline Reinforcement Learning via Supervised Learning »
Alexandre Piche · Rafael Pardinas · David Vazquez · Igor Mordatch · Igor Mordatch · Chris Pal -
2023 Poster: Game Solving with Online Learning »
Ti-Rong Wu · Hung Guei · Ting-Han Wei · Chung-Chin Shih · Jui-Te Chin · I-Chen Wu -
2023 Poster: SMACv2: An Improved Benchmark for Cooperative Multi-Agent Reinforcement Learning »
Benjamin Ellis · Jonathan Cook · Skander Moalla · Mikayel Samvelyan · Mingfei Sun · Anuj Mahajan · Jakob Foerster · Shimon Whiteson -
2023 Tutorial: Do You Prefer Learning with Preferences? »
Aditya Gopalan · -
2022 Poster: On the Parameterization and Initialization of Diagonal State Space Models »
Albert Gu · Karan Goel · Ankit Gupta · Christopher Ré -
2022 Poster: Learning General World Models in a Handful of Reward-Free Deployments »
Yingchen Xu · Jack Parker-Holder · Aldo Pacchiano · Philip Ball · Oleh Rybkin · S Roberts · Tim Rocktäschel · Edward Grefenstette -
2022 Poster: S4ND: Modeling Images and Videos as Multidimensional Signals with State Spaces »
Eric Nguyen · Karan Goel · Albert Gu · Gordon Downs · Preey Shah · Tri Dao · Stephen Baccus · Christopher Ré -
2021 Poster: Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers »
Albert Gu · Isys Johnson · Karan Goel · Khaled Saab · Tri Dao · Atri Rudra · Christopher Ré -
2021 Poster: Discovering and Achieving Goals via World Models »
Russell Mendonca · Oleh Rybkin · Kostas Daniilidis · Danijar Hafner · Deepak Pathak -
2021 Poster: Which Mutual-Information Representation Learning Objectives are Sufficient for Control? »
Kate Rakelly · Abhishek Gupta · Carlos Florensa · Sergey Levine -
2021 Poster: Bayesian Bellman Operators »
Mattie Fellows · Kristian Hartikainen · Shimon Whiteson -
2021 Poster: Representing Long-Range Context for Graph Neural Networks with Global Attention »
Zhanghao Wu · Paras Jain · Matthew Wright · Azalia Mirhoseini · Joseph Gonzalez · Ion Stoica -
2021 Poster: Information is Power: Intrinsic Control via Information Capture »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 Poster: Snowflake: Scaling GNNs to high-dimensional continuous control via parameter freezing »
Charles Blake · Vitaly Kurin · Maximilian Igl · Shimon Whiteson -
2021 Poster: Sharp Impossibility Results for Hyper-graph Testing »
Jiashun Jin · Zheng Tracy Ke · Jiajun Liang -
2021 Poster: Iterative Amortized Policy Optimization »
Joseph Marino · Alexandre Piche · Alessandro Davide Ialongo · Yisong Yue -
2020 Poster: Dual Instrumental Variable Regression »
Krikamol Muandet · Arash Mehrjou · Si Kai Lee · Anant Raj -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2019 : Invited Speaker: Ion Stoica »
Ion Stoica -
2019 : Contributed Talk (Best Paper) - Michelle Lee & Carlos Florensa »
Carlos Florensa · Michelle A. Lee -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Welcome »
Rowan McAllister · Nicholas Rhinehart · Li Erran Li -
2019 Workshop: Machine Learning for Autonomous Driving »
Rowan McAllister · Nicholas Rhinehart · Fisher Yu · Li Erran Li · Anca Dragan -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck »
Maximilian Igl · Kamil Ciosek · Yingzhen Li · Sebastian Tschiatschek · Cheng Zhang · Sam Devlin · Katja Hofmann -
2019 Poster: Goal-conditioned Imitation Learning »
Yiming Ding · Carlos Florensa · Pieter Abbeel · Mariano Phielipp -
2019 Poster: VIREL: A Variational Inference Framework for Reinforcement Learning »
Mattie Fellows · Anuj Mahajan · Tim G. J. Rudner · Shimon Whiteson -
2019 Spotlight: VIREL: A Variational Inference Framework for Reinforcement Learning »
Mattie Fellows · Anuj Mahajan · Tim G. J. Rudner · Shimon Whiteson -
2019 Poster: State Aggregation Learning from Markov Transition Data »
Yaqi Duan · Zheng Tracy Ke · Mengdi Wang -
2019 Poster: Beyond Confidence Regions: Tight Bayesian Ambiguity Sets for Robust MDPs »
Marek Petrik · Reazul Hasan Russel -
2019 Poster: Bayesian Optimization under Heavy-tailed Payoffs »
Sayak Ray Chowdhury · Aditya Gopalan -
2019 Spotlight: Bayesian Optimization under Heavy-tailed Payoffs »
Sayak Ray Chowdhury · Aditya Gopalan -
2019 Poster: Combinatorial Bandits with Relative Feedback »
Aadirupa Saha · Aditya Gopalan -
2019 Poster: Learning low-dimensional state embeddings and metastable clusters from time series data »
Yifan Sun · Yaqi Duan · Hao Gong · Mengdi Wang -
2019 Poster: Sampling Networks and Aggregate Simulation for Online POMDP Planning »
Hao(Jackson) Cui · Roni Khardon -
2019 Poster: Communication-efficient Distributed SGD with Sketching »
Nikita Ivkin · Daniel Rothchild · Enayat Ullah · Vladimir Braverman · Ion Stoica · Raman Arora -
2018 : Deep Imitative Models for Flexible Inference, Planning, and Control (Nicholas Rhinehart) »
Nicholas Rhinehart -
2018 : Tight Bayesian Ambiguity Sets for Robust MDPs (Reazul Hasan Russel) »
Reazul Hasan Russel -
2018 : Learning to Plan with Logical Automata (Brandon Araki) »
Brandon Araki -
2018 : Contributed Talks »
Nicholas Rhinehart · Amar Shah -
2018 : Spotlights 2 »
Aditya Gopalan · Sungjoon Choi · Thomas Ringstrom · Roy Fox · Jonas Degrave · Xiya Cao · Karl Pertsch · Maximilian Igl · Brian Ichter -
2018 : Spotlights 1 »
Ming-Xu Huang · Hao(Jackson) Cui · Arash Mehrjou · Yaqi Duan · Sharad Vikram · Angelina Wang · Karan Goel · Jonathan Hunt · Zhengwei Wu · Dinghan Shen · Mattie Fellows -
2018 : Probabilistic Planning with Sequential Monte Carlo (Alexandre Piché) »
Alexandre Piche -
2018 : Variational Inference Techniques for Sequential Decision Making in Generative Models (Igor Kiselev) »
Igor Kiselev -
2018 : Unsupervised Learning of Image Embedding for Continuous Control (Carlos Florensa) »
Carlos Florensa -
2018 : Contributed Talk 3: Learning Robotic Manipulation through Visual Planning and Acting »
Angelina Wang -
2018 : Coffee Break and Poster Session I »
Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2018 Poster: From Stochastic Planning to Marginal MAP »
Hao(Jackson) Cui · Radu Marinescu · Roni Khardon -
2018 Poster: Maximum Causal Tsallis Entropy Imitation Learning »
Kyungjae Lee · Sungjoon Choi · Songhwai Oh -
2018 Poster: Adversarial Text Generation via Feature-Mover's Distance »
Liqun Chen · Shuyang Dai · Chenyang Tao · Haichao Zhang · Zhe Gan · Dinghan Shen · Yizhe Zhang · Guoyin Wang · Dinghan Shen · Lawrence Carin -
2018 Demonstration: Automatic Curriculum Generation Applied to Teaching Novices a Short Bach Piano Segment »
Emma Brunskill · Tong Mu · Karan Goel · Jonathan Bragg -
2017 : Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 : Aligned AI Poster Session »
Amanda Askell · Rafal Muszynski · William Wang · Yaodong Yang · Quoc Nguyen · Bryan Kian Hsiang Low · Patrick Jaillet · Candice Schumann · Anqi Liu · Peter Eckersley · Angelina Wang · William Saunders -
2017 : Spotlights & Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 Workshop: Hierarchical Reinforcement Learning »
Andrew G Barto · Doina Precup · Shie Mannor · Tom Schaul · Roy Fox · Carlos Florensa -
2017 Poster: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Spotlight: Successor Features for Transfer in Reinforcement Learning »
Andre Barreto · Will Dabney · Remi Munos · Jonathan Hunt · Tom Schaul · David Silver · Hado van Hasselt -
2017 Poster: Predictive-State Decoders: Encoding the Future into Recurrent Networks »
Arun Venkatraman · Nicholas Rhinehart · Wen Sun · Lerrel Pinto · Martial Hebert · Byron Boots · Kris Kitani · J. Bagnell -
2015 Poster: Lifted Inference Rules With Constraints »
Happy Mittal · Anuj Mahajan · Vibhav Gogate · Parag Singla