Timezone: »
Research Panel
Sinead Williamson · Barbara Engelhardt · Tom Griffiths · Neil Lawrence · Hanna Wallach
Fri Dec 07 01:30 PM -- 02:30 PM (PST) @
Author Information
Sinead Williamson (University of Texas at Austin)
Barbara Engelhardt (Princeton University)
Tom Griffiths (Princeton)
Neil Lawrence (University of Cambridge)
Hanna Wallach (MSR NYC)
More from the Same Authors
-
2021 : Multi-Group Reinforcement Learning for Maternal Health in Childbirth »
Barbara Engelhardt · Promise Ekpo -
2022 : Multi-fidelity Bayesian experimental design using power posteriors »
Andrew Jones · Diana Cai · Barbara Engelhardt -
2022 : Sequential Gaussian Processes for Online Learning of Nonstationary Functions »
Michael Minyi Zhang · Bianca Dumitrascu · Sinead Williamson · Barbara Engelhardt -
2022 : Detecting Synthetic Opioids with NQR Spectroscopy and Complex-Valued Signal Denoising »
Amber Day · Natalie Klein · Michael Malone · Harris Mason · Sinead Williamson -
2022 : Detecting State Changes in Dynamic Neuronal Networks »
Yiwei Gong · Sinead Williamson -
2022 : Multi-group Reinforcement Learning for Electrolyte Repletion »
Promise Ekpo · Barbara Engelhardt -
2022 : Spike-and-Slab Probabilistic Backpropagation: When Smarter Approximations Make No Difference »
Evan Ott · Sinead Williamson -
2021 : Invited talk (ML) - Barbara Engelhardt »
Barbara Engelhardt -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Panel: How Should a Machine Learning Researcher Think About AI Ethics? »
Amanda Askell · Abeba Birhane · Jesse Dodge · Casey Fiesler · Pascale N Fung · Hanna Wallach -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 : Morning keynote »
Hanna Wallach · Rosie Campbell -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2019 : In conversations: Daphne Koller and Barbara Englehardt »
Daphne Koller · Barbara Engelhardt -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: Poisson-Randomized Gamma Dynamical Systems »
Aaron Schein · Scott Linderman · Mingyuan Zhou · David Blei · Hanna Wallach -
2018 : Barbara Engelhardt »
Barbara Engelhardt -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Hanna Wallach - Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? »
Hanna Wallach -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Revealing human inductive biases and metacognitive processes with rational models »
Tom Griffiths -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Poster: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2017 Oral: A graph-theoretic approach to multitasking »
Noga Alon · Daniel Reichman · Igor Shinkar · Tal Wagner · Sebastian Musslick · Jonathan D Cohen · Tom Griffiths · Biswadip dey · Kayhan Ozcimder -
2016 Workshop: Machine Learning in Computational Biology »
Gerald Quon · Sara Mostafavi · James Y Zou · Barbara Engelhardt · Oliver Stegle · Nicolo Fusi -
2016 : Bounded Optimality and Rational Metareasoning in Human Cognition »
Tom Griffiths -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Oral: Poisson-Gamma dynamical systems »
Aaron Schein · Hanna Wallach · Mingyuan Zhou -
2016 Poster: Flexible Models for Microclustering with Application to Entity Resolution »
Brenda Betancourt · Giacomo Zanella · Jeffrey Miller · Hanna Wallach · Abbas Zaidi · Beka Steorts -
2015 Workshop: Bayesian Nonparametrics: The Next Generation »
Tamara Broderick · Nick Foti · Aaron Schein · Alex Tank · Hanna Wallach · Sinead Williamson -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Workshop: Bounded Optimality and Rational Metareasoning »
Samuel J Gershman · Falk Lieder · Tom Griffiths · Noah Goodman -
2014 Poster: Algorithm selection by rational metareasoning as a model of human strategy selection »
Falk Lieder · Dillon Plunkett · Jessica B Hamrick · Stuart J Russell · Nicholas Hay · Tom Griffiths -
2014 Poster: Dependent nonparametric trees for dynamic hierarchical clustering »
Kumar Avinava Dubey · Qirong Ho · Sinead Williamson · Eric Xing -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Poster: Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies »
Yangqing Jia · Joshua T Abbott · Joseph L Austerweil · Tom Griffiths · Trevor Darrell -
2012 Poster: Topic-Partitioned Multinetwork Embeddings »
Peter Krafft · Juston S Moore · Hanna Wallach · Bruce Desmarais -
2012 Poster: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Spotlight: Human memory search as a random walk in a semantic network »
Joshua T Abbott · Joseph L Austerweil · Tom Griffiths -
2012 Poster: Burn-in, bias, and the rationality of anchoring »
Falk Lieder · Tom Griffiths · Noah Goodman -
2011 Workshop: 2nd Workshop on Computational Social Science and the Wisdom of Crowds »
Winter Mason · Jennifer Wortman Vaughan · Hanna Wallach -
2011 Poster: A rational model of causal inference with continuous causes »
M Pacer · Tom Griffiths -
2011 Poster: An ideal observer model for identifying the reference frame of objects »
Joseph L Austerweil · Abram Friesen · Tom Griffiths -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2010 Workshop: Transfer Learning Via Rich Generative Models. »
Russ Salakhutdinov · Ryan Adams · Josh Tenenbaum · Zoubin Ghahramani · Tom Griffiths -
2010 Workshop: Computational Social Science and the Wisdom of Crowds »
Jennifer Wortman Vaughan · Hanna Wallach -
2010 Spotlight: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2010 Poster: Learning invariant features using the Transformed Indian Buffet Process »
Joseph L Austerweil · Tom Griffiths -
2009 Workshop: Bounded-rational analyses of human cognition: Bayesian models, approximate inference, and the brain »
Noah Goodman · Edward Vul · Tom Griffiths · Josh Tenenbaum -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling »
Lei ShiUpdateMe · Tom Griffiths -
2009 Spotlight: Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling »
Lei ShiUpdateMe · Tom Griffiths -
2009 Poster: Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning »
Anne Hsu · Tom Griffiths -
2009 Oral: Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning »
Anne Hsu · Tom Griffiths -
2009 Poster: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2009 Poster: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2009 Spotlight: Nonparametric Latent Feature Models for Link Prediction »
Kurt T Miller · Tom Griffiths · Michael Jordan -
2009 Spotlight: Rethinking LDA: Why Priors Matter »
Hanna Wallach · David Mimno · Andrew McCallum -
2008 Workshop: Machine learning meets human learning »
Nathaniel D Daw · Tom Griffiths · Josh Tenenbaum · Jerry Zhu -
2008 Poster: Modeling the effects of memory on human online sentence processing with particle filters »
Roger Levy · Florencia Reali · Tom Griffiths -
2008 Oral: Modeling the effects of memory on human online sentence processing with particle filters »
Roger Levy · Florencia Reali · Tom Griffiths -
2008 Poster: How memory biases affect information transmission: A rational analysis of serial reproduction »
Jing Xu · Tom Griffiths -
2008 Poster: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Poster: A rational model of preference learning and choice prediction by children »
Chris Lucas · Tom Griffiths · Fei Xu · Christine Fawcett -
2008 Spotlight: Analyzing human feature learning as nonparametric Bayesian inference »
Joseph L Austerweil · Tom Griffiths -
2008 Spotlight: A rational model of preference learning and choice prediction by children »
Chris Lucas · Tom Griffiths · Fei Xu · Christine Fawcett -
2008 Spotlight: How memory biases affect information transmission: A rational analysis of serial reproduction »
Jing Xu · Tom Griffiths -
2008 Poster: Modeling human function learning with Gaussian processes »
Tom Griffiths · Chris Lucas · Joseph Jay Williams · Michael Kalish -
2007 Oral: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: Markov Chain Monte Carlo with People »
Adam Sanborn · Tom Griffiths -
2007 Poster: A Probabilistic Approach to Language Change »
Alexandre Bouchard-Côté · Percy Liang · Tom Griffiths · Dan Klein -
2006 Poster: Particle Filtering for Nonparametric Bayesian Matrix Factorization »
Frank Wood · Tom Griffiths -
2006 Poster: Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Mod »
Mark Johnson · Tom Griffiths · Sharon Goldwater -
2006 Poster: A Nonparametric Bayesian Method for Inferring Features From Similarity Judgments »
Daniel Navarro · Tom Griffiths