Timezone: »
Author Information
David Zeng (Stanford University)
Marzieh S. Tahaei (McGill University)
Shuai Chen (Erasmus MC)
Felix Meister (Friedrich-Alexander-University Erlangen-Nürnberg)
Meet Shah (Facebook)
Anant Gupta (New York University)
Ajil Jalal (University of Texas at Austin)
Eirini Arvaniti (ETH Zurich)
David Zimmerer (German Cancer Research Center (DKFZ))
Konstantinos Kamnitsas (Imperial College London)
Pedro Ballester (Pontifícia Universidade Católica do Rio Grande do Sul)
Nathaniel Braman (Case Western Reserve University)
Udaya Kumar (Manipal Institute of Technology)
Sil C. van de Leemput (Radboud University Medical Center)
Junaid Qadir (Information Technology University, Lahore, Pakistan)
Junaid Qadir is an Associate Professor at the Information Technology University (ITU)—Punjab, Lahore since December 2015, where he directs the ICTD; Human Development; Systems; Big Data Analytics; Networks (IHSAN) Research Lab. His primary research interests are in the areas of computer systems and networking and using ICT for development (ICT4D). He is an Associate Editor for IEEE Access, Springer Nature Central’s Big Data Analytics journal, Springer Human-Centric Computing and Information Sciences, and the IEEE Communications Magazine.
Hoel Kervadec (ÉTS Montréal)
Mohamed Akrout (University of Toronto)
Adrian Tousignant (Mcgill University)
Matthew Ng (University of Toronto)
Raghav Mehta (McGill University)
Miguel Monteiro (Imperial College London)
Sumana Basu (McGill University)
Jonas Adler (KTH - Royal Institute of Technology)
I’m a Research Scientist at Elekta, pursuing a PhD in Applied Mathematics working under the supervision of Ozan Öktem. I do research in inverse problems and machine learning, especially focusing on the intersection between model-driven and data-driven methods. Organizing [DLIP2019](https://sites.google.com/view/dlip2019).
Adrian Dalca (MIT)
Jizong Peng (ETS)
Sungyeob Han (Seoul National University)
Ph. D. Student of Seoul National University
Xiaoxiao Li (Yale University)
Karthik Gopinath (ETS Montreal)
Joseph Cheng (Stanford University)
Bogdan Georgescu (Siemens)
Kha Gia Quach (Concordia University)
Karthik Sarma (American Medical Association)
Karthik V. Sarma is an MD-PhD student at the UCLA Medical Imaging Informatics group. Karthik’s research focuses on the development of novel artificial intelligence techniques for medical applications, with a focus on prostate cancer. In addition to his graduate studies at UCLA, Karthik is the CTO of SimX, a virtual reality medical simulation company, and a member of the Board of Trustees of the American Medical Association. A native of Chicago, Karthik is an alumnus of the California Institute of Technology, where he received the degree of Bachelor of Science with honors in computer science. He lives in Los Angeles, CA.
David Van Veen (University of Texas at Austin)
More from the Same Authors
-
2020 : Learning MRI contrast agnostic registration »
Malte Hoffmann · Adrian Dalca -
2021 : Diversified Multi-prototype Representation for Semi-supervised Segmentation »
Jizong Peng · Christian Desrosiers · Marco Pedersoli -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : UniverSeg: Universal Medical Image Segmentation »
Victor Butoi · Jose Javier Gonzalez Ortiz · Tianyu Ma · John Guttag · Mert Sabuncu · Adrian Dalca -
2022 : Probabilistic Interactive Segmentation for Medical Images »
Hallee Wong · John Guttag · Adrian Dalca -
2022 : Contrast Invariant Feature Representations for Medical Image Analysis »
Yue Zhi, Russ Chua · Adrian Dalca -
2022 : Region-of-Interest Adaptive Acquisition for Accelerated MRI »
Zihui Wu · Tianwei Yin · Adrian Dalca · Katherine Bouman -
2023 Poster: Scale-Space Hypernetworks for Efficient Biomedical Image Analysis »
Jose Javier Gonzalez Ortiz · John Guttag · Adrian Dalca -
2023 Poster: Type-to-Track: Retrieve Any Object via Prompt-based Tracking »
Pha Nguyen · Kha Gia Quach · Kris Kitani · Khoa Luu -
2022 Workshop: Machine Learning in Structural Biology Workshop »
Roshan Rao · Jonas Adler · Namrata Anand · John Ingraham · Sergey Ovchinnikov · Ellen Zhong -
2022 : MAEEG: Masked Auto-encoder for EEG Representation Learning »
Sherry Chien · Hanlin Goh · Christopher Sandino · Joseph Cheng -
2022 Workshop: Medical Imaging meets NeurIPS »
DOU QI · Konstantinos Kamnitsas · Yuankai Huo · Xiaoxiao Li · Daniel Moyer · Danielle Pace · Jonas Teuwen · Islem Rekik -
2022 Poster: Is Integer Arithmetic Enough for Deep Learning Training? »
Alireza Ghaffari · Marzieh S. Tahaei · Mohammadreza Tayaranian · Masoud Asgharian · Vahid Partovi Nia -
2021 : Jonas Adler »
Jonas Adler -
2021 Poster: Self-Paced Contrastive Learning for Semi-supervised Medical Image Segmentation with Meta-labels »
Jizong Peng · Ping Wang · Christian Desrosiers · Marco Pedersoli -
2021 Poster: Robust Compressed Sensing MRI with Deep Generative Priors »
Ajil Jalal · Marius Arvinte · Giannis Daras · Eric Price · Alex Dimakis · Jon Tamir -
2020 : Compressed Sensing with Approximate Priors via Conditional Resampling »
Ajil Jalal -
2020 Poster: Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty »
Miguel Monteiro · Loic Le Folgoc · Daniel Coelho de Castro · Nick Pawlowski · Bernardo Marques · Konstantinos Kamnitsas · Mark van der Wilk · Ben Glocker -
2020 Poster: Robust compressed sensing using generative models »
Ajil Jalal · Liu Liu · Alex Dimakis · Constantine Caramanis -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Coffee Break + Poster Session II »
Niki Parmar · Haraldur Hallgrimsson · Christian Kames · Arijit Patra · Abdullah-Al-Zubaer Imran · Junlin Yang · David Zimmerer · Arunava Chakravarty · Lawrence Schobs · Alexej Gossmann · TUNG-I CHEN · Tarun Dutt · Li Yao · Octavio Eleazar Martinez Manzanera · Johannes Pinckaers · Mehmet Ufuk Dalmis · Deepak Gupta · Nandinee Haq · David Ruhe · Jevgenij Gamper · Alfredo De Goyeneche Macaya · Jonathan Tamir · Byunghwan Jeon · SUBBAREDDY OOTA · Reinhard Heckel · Pamela K Douglas · Oleksii Sidorov · Ke Wang · Melanie Garcia · Ravi Soni · Ankita Shukla -
2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott -
2019 Poster: Domain Generalization via Model-Agnostic Learning of Semantic Features »
Qi Dou · Daniel Coelho de Castro · Konstantinos Kamnitsas · Ben Glocker -
2019 Poster: Inverting Deep Generative models, One layer at a time »
Qi Lei · Ajil Jalal · Inderjit Dhillon · Alex Dimakis -
2019 Poster: Learning Conditional Deformable Templates with Convolutional Networks »
Adrian Dalca · Marianne Rakic · John Guttag · Mert Sabuncu -
2019 Poster: Deep Learning without Weight Transport »
Mohamed Akrout · Collin Wilson · Peter Humphreys · Timothy Lillicrap · Douglas Tweed -
2018 : Oral session III »
Nathaniel Braman · Adrian Tousignant · Matthew Ng -
2018 : Oral session II »
Sil C. van de Leemput · Adrian Dalca · Karthik Gopinath -
2018 : Poster Session I »
Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang -
2018 : Oral session I »
Jonas Adler · Ajil Jalal · Joseph Cheng -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Poster: Gaussian Process Prior Variational Autoencoders »
Francesco Paolo Casale · Adrian Dalca · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi -
2018 Poster: Banach Wasserstein GAN »
Jonas Adler · Sebastian Lunz -
2017 : 6 x 3 minutes spotlights »
Rémi Flamary · Yongxin Chen · Napat Rujeerapaiboon · Jonas Adler · John Lee · Lucas R Roberts -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka