Timezone: »
We consider a generalization of mixed regression where the response is an additive combination of several mixture components. Standard mixed regression is a special case where each response is generated from exactly one component. Typical approaches to the mixture regression problem employ local search methods such as Expectation Maximization (EM) that are prone to spurious local optima. On the other hand, a number of recent theoretically-motivated \emph{Tensor-based methods} either have high sample complexity, or require the knowledge of the input distribution, which is not available in most of practical situations. In this work, we study a novel convex estimator \emph{MixLasso} for the estimation of generalized mixed regression, based on an atomic norm specifically constructed to regularize the number of mixture components. Our algorithm gives a risk bound that trades off between prediction accuracy and model sparsity without imposing stringent assumptions on the input/output distribution, and can be easily adapted to the case of non-linear functions. In our numerical experiments on mixtures of linear as well as nonlinear regressions, the proposed method yields high-quality solutions in a wider range of settings than existing approaches.
Author Information
Ian En-Hsu Yen (Carnegie Mellon University)
Wei-Cheng Lee (National Taiwan University)
Kai Zhong (Amazon)
Sung-En Chang (Northeastern University)
Pradeep Ravikumar (Carnegie Mellon University)
Shou-De Lin (National Taiwan University)
More from the Same Authors
-
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 Spotlight: Identifiability of deep generative models without auxiliary information »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 : Panel Discussion »
Behnam Neyshabur · David Sontag · Pradeep Ravikumar · Erin Hartman -
2022 Workshop: Human in the Loop Learning (HiLL) Workshop at NeurIPS 2022 »
Shanghang Zhang · Hao Dong · Wei Pan · Pradeep Ravikumar · Vittorio Ferrari · Fisher Yu · Xin Wang · Zihan Ding -
2022 Poster: DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization »
Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2022 Poster: Environment Diversification with Multi-head Neural Network for Invariant Learning »
Bo-Wei Huang · Keng-Te Liao · Chang-Sheng Kao · Shou-De Lin -
2022 Poster: Identifiability of deep generative models without auxiliary information »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2022 Poster: First is Better Than Last for Language Data Influence »
Chih-Kuan Yeh · Ankur Taly · Mukund Sundararajan · Frederick Liu · Pradeep Ravikumar -
2021 Poster: Learning latent causal graphs via mixture oracles »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2021 Poster: When Is Generalizable Reinforcement Learning Tractable? »
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar -
2020 Poster: On Learning Ising Models under Huber's Contamination Model »
Adarsh Prasad · Vishwak Srinivasan · Sivaraman Balakrishnan · Pradeep Ravikumar -
2020 Poster: On Completeness-aware Concept-Based Explanations in Deep Neural Networks »
Chih-Kuan Yeh · Been Kim · Sercan Arik · Chun-Liang Li · Tomas Pfister · Pradeep Ravikumar -
2020 Poster: Generalized Boosting »
Arun Suggala · Bingbin Liu · Pradeep Ravikumar -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: On the (In)fidelity and Sensitivity of Explanations »
Chih-Kuan Yeh · Cheng-Yu Hsieh · Arun Suggala · David Inouye · Pradeep Ravikumar -
2019 Poster: Provable Non-linear Inductive Matrix Completion »
Kai Zhong · Zhao Song · Prateek Jain · Inderjit Dhillon -
2019 Poster: On Human-Aligned Risk Minimization »
Liu Leqi · Adarsh Prasad · Pradeep Ravikumar -
2019 Poster: Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation »
Chen Dan · Hong Wang · Hongyang Zhang · Yuchen Zhou · Pradeep Ravikumar -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2018 Poster: The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models »
Chen Dan · Liu Leqi · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Connecting Optimization and Regularization Paths »
Arun Suggala · Adarsh Prasad · Pradeep Ravikumar -
2018 Poster: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Spotlight: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Representer Point Selection for Explaining Deep Neural Networks »
Chih-Kuan Yeh · Joon Kim · Ian En-Hsu Yen · Pradeep Ravikumar -
2017 : Pradeep Ravikumar (CMU) on A Parallel Primal-Dual Sparse Method for Extreme Classification »
Pradeep Ravikumar -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar -
2017 Poster: On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models »
Adarsh Prasad · Alexandru Niculescu-Mizil · Pradeep Ravikumar -
2017 Spotlight: On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models »
Adarsh Prasad · Alexandru Niculescu-Mizil · Pradeep Ravikumar -
2017 Poster: PRUNE: Preserving Proximity and Global Ranking for Network Embedding »
Yi-An Lai · Chin-Chi Hsu · Wen Hao Chen · Mi-Yen Yeh · Shou-De Lin -
2016 Poster: Coordinate-wise Power Method »
Qi Lei · Kai Zhong · Inderjit Dhillon -
2016 Poster: Mixed Linear Regression with Multiple Components »
Kai Zhong · Prateek Jain · Inderjit Dhillon -
2016 Poster: Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain »
Ian En-Hsu Yen · Xiangru Huang · Kai Zhong · Ruohan Zhang · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fast Classification Rates for High-dimensional Gaussian Generative Models »
Tianyang Li · Adarsh Prasad · Pradeep Ravikumar -
2015 Poster: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs »
Vidyashankar Sivakumar · Arindam Banerjee · Pradeep Ravikumar -
2015 Poster: Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent »
Ian En-Hsu Yen · Kai Zhong · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: A Dual Augmented Block Minimization Framework for Learning with Limited Memory »
Ian En-Hsu Yen · Shan-Wei Lin · Shou-De Lin -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2014 Poster: QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Stephen Becker · Peder A Olsen -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Poster: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space »
Ian En-Hsu Yen · Ting-Wei Lin · Shou-De Lin · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators »
Kai Zhong · Ian En-Hsu Yen · Inderjit Dhillon · Pradeep Ravikumar -
2014 Poster: A Representation Theory for Ranking Functions »
Harsh H Pareek · Pradeep Ravikumar -
2014 Poster: Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings »
Ian En-Hsu Yen · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: Conditional Random Fields via Univariate Exponential Families »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: On Poisson Graphical Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Oral: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Poster: Dirty Statistical Models »
Eunho Yang · Pradeep Ravikumar -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2012 Poster: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Oral: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Poster: A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Arindam Banerjee -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Poster: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Spotlight: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar -
2011 Session: Oral Session 5 »
Pradeep Ravikumar -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Session: Oral Session 14 »
Pradeep Ravikumar -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2009 Oral: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2008 Poster: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Spotlight: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Poster: Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of \ell_1-regularizedMLE »
Pradeep Ravikumar · Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty