Timezone: »
We analyze linear independence of rank one tensors produced by tensor powers of randomly perturbed vectors. This enables efficient decomposition of sums of high-order tensors. Our analysis builds upon [BCMV14] but allows for a wider range of perturbation models, including discrete ones. We give an application to recovering assemblies of neurons.
Assemblies are large sets of neurons representing specific memories or concepts. The size of the intersection of two assemblies has been shown in experiments to represent the extent to which these memories co-occur or these concepts are related; the phenomenon is called association of assemblies. This suggests that an animal's memory is a complex web of associations, and poses the problem of recovering this representation from cognitive data. Motivated by this problem, we study the following more general question: Can we reconstruct the Venn diagram of a family of sets, given the sizes of their l-wise intersections? We show that as long as the family of sets is randomly perturbed, it is enough for the number of measurements to be polynomially larger than the number of nonempty regions of the Venn diagram to fully reconstruct the diagram.
Author Information
Nima Anari (Stanford University)
Constantinos Daskalakis (MIT)
Wolfgang Maass (Graz University of Technology)
Christos Papadimitriou (Columbia University)
Amin Saberi (Stanford University)
Santosh Vempala (Georgia Tech)
More from the Same Authors
-
2021 : Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 : Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 : Price Discovery and Efficiency in Waiting Lists: A Connection to Stochastic Gradient Descent »
Itai Ashlagi · Jacob Leshno · Pengyu Qian · Amin Saberi -
2021 : Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 : Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 : Price Discovery and Efficiency in Waiting Lists: A Connection to Stochastic Gradient Descent »
Itai Ashlagi · Jacob Leshno · Pengyu Qian · Amin Saberi -
2023 Poster: Contrastive Moments: Unsupervised Halfspace Learning in Polynomial Time »
Xinyuan Cao · Santosh Vempala -
2023 Poster: Martingale Diffusion Models: Mitigating Sampling Drift by Learning to be Consistent »
Giannis Daras · Yuval Dagan · Alex Dimakis · Constantinos Daskalakis -
2022 Poster: Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space »
Yunbum Kook · Yin-Tat Lee · Ruoqi Shen · Santosh Vempala -
2021 : Spotlight 4: Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 Poster: Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 : An Interactive Tool for Computation with Assemblies of Neurons »
Seung Je Jung · Christos Papadimitriou · Santosh Vempala -
2021 Poster: Efficient Truncated Linear Regression with Unknown Noise Variance »
Constantinos Daskalakis · Patroklos Stefanou · Rui Yao · Emmanouil Zampetakis -
2021 Oral: Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2020 Poster: Tight last-iterate convergence rates for no-regret learning in multi-player games »
Noah Golowich · Sarath Pattathil · Constantinos Daskalakis -
2020 Poster: Truncated Linear Regression in High Dimensions »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Poster: Constant-Expansion Suffices for Compressed Sensing with Generative Priors »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Spotlight: Constant-Expansion Suffices for Compressed Sensing with Generative Priors »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Poster: Independent Policy Gradient Methods for Competitive Reinforcement Learning »
Constantinos Daskalakis · Dylan Foster · Noah Golowich -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Contributed Talk #2: Slow processes of neurons enable a biologically plausible approximation to policy gradient »
Wolfgang Maass -
2019 : Coffee Break & Poster Session »
Samia Mohinta · Andrea Agostinelli · Alexandra Moringen · Jee Hang Lee · Yat Long Lo · Wolfgang Maass · Blue Sheffer · Colin Bredenberg · Benjamin Eysenbach · Liyu Xia · Efstratios Markou · Jan Lichtenberg · Pierre Richemond · Tony Zhang · JB Lanier · Baihan Lin · William Fedus · Glen Berseth · Marta Sarrico · Matthew Crosby · Stephen McAleer · Sina Ghiassian · Franz Scherr · Guillaume Bellec · Darjan Salaj · Arinbjörn Kolbeinsson · Matthew Rosenberg · Jaehoon Shin · Sang Wan Lee · Guillermo Cecchi · Irina Rish · Elias Hajek -
2019 Poster: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala -
2019 Spotlight: Multi-Criteria Dimensionality Reduction with Applications to Fairness »
Uthaipon Tantipongpipat · Samira Samadi · Mohit Singh · Jamie Morgenstern · Santosh Vempala -
2019 Poster: Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices »
Santosh Vempala · Andre Wibisono -
2018 : Improving Generative Adversarial Networks using Game Theory and Statistics »
Constantinos Daskalakis -
2018 Poster: Learning and Testing Causal Models with Interventions »
Jayadev Acharya · Arnab Bhattacharyya · Constantinos Daskalakis · Saravanan Kandasamy -
2018 Poster: HOGWILD!-Gibbs can be PanAccurate »
Constantinos Daskalakis · Nishanth Dikkala · Siddhartha Jayanti -
2018 Poster: Long short-term memory and Learning-to-learn in networks of spiking neurons »
Guillaume Bellec · Darjan Salaj · Anand Subramoney · Robert Legenstein · Wolfgang Maass -
2018 Poster: The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization »
Constantinos Daskalakis · Ioannis Panageas -
2018 Poster: The Price of Fair PCA: One Extra dimension »
Samira Samadi · Uthaipon Tantipongpipat · Jamie Morgenstern · Mohit Singh · Santosh Vempala -
2017 Poster: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Spotlight: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Poster: Concentration of Multilinear Functions of the Ising Model with Applications to Network Data »
Constantinos Daskalakis · Nishanth Dikkala · Gautam Kamath -
2016 : Reward-based self-configuration of networks of spiking neurons »
Wolfgang Maass -
2015 Poster: Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring »
David Kappel · Stefan Habenschuss · Robert Legenstein · Wolfgang Maass -
2015 Poster: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath -
2015 Spotlight: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath -
2015 Poster: Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's »
Vitaly Feldman · Will Perkins · Santosh Vempala -
2009 Poster: Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Oral: Functional Network Reorganization In Motor Cortex Can Be Explained by Reward-Modulated Hebbian Learning »
Robert Legenstein · Steven Chase · Andrew B Schwartz · Wolfgang Maass -
2009 Poster: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Spotlight: STDP enables spiking neurons to detect hidden causes of their inputs »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2009 Poster: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2009 Spotlight: Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks »
Stefan Klampfl · Wolfgang Maass -
2008 Poster: Hebbian Learning of Bayes Optimal Decisions »
Bernhard Nessler · Michael Pfeiffer · Wolfgang Maass -
2007 Spotlight: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Theoretical Analysis of Learning with Reward-Modulated Spike-Timing-Dependent Plasticity »
Robert Legenstein · Dejan Pecevski · Wolfgang Maass -
2007 Poster: Simplified Rules and Theoretical Analysis for Information Bottleneck Optimization and PCA with Spiking Neurons »
Lars Buesing · Wolfgang Maass -
2006 Workshop: Echo State Networks and Liquid State Machines »
Herbert Jaeger · Wolfgang Maass · Jose C Principe -
2006 Poster: Temporal dynamics of information content carried by neurons in the primary visual cortex »
Danko Nikolic · Stefan Haeusler · Wolf Singer · Wolfgang Maass -
2006 Poster: Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons »
Stefan Klampfl · Robert Legenstein · Wolfgang Maass