Timezone: »
We present a convolutional network that is equivariant to rigid body motions. The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to represent data, and equivariant convolutions to map between such representations. These SE(3)-equivariant convolutions utilize kernels which are parameterized as a linear combination of a complete steerable kernel basis, which is derived analytically in this paper. We prove that equivariant convolutions are the most general equivariant linear maps between fields over R^3. Our experimental results confirm the effectiveness of 3D Steerable CNNs for the problem of amino acid propensity prediction and protein structure classification, both of which have inherent SE(3) symmetry.
Author Information
Maurice Weiler (University of Amsterdam)
Wouter Boomsma (University of Copenhagen)
Mario Geiger (EPFL)
Max Welling (University of Amsterdam / Qualcomm AI Research)
Taco Cohen (University of Amsterdam)
Taco Cohen is a machine learning research scientist at Qualcomm AI Research in Amsterdam and a PhD student at the University of Amsterdam, supervised by prof. Max Welling. He was a co-founder of Scyfer, a company focussed on active deep learning, acquired by Qualcomm in 2017. He holds a BSc in theoretical computer science from Utrecht University and a MSc in artificial intelligence from the University of Amsterdam (both cum laude). His research is focussed on understanding and improving deep representation learning, in particular learning of equivariant and disentangled representations, data-efficient deep learning, learning on non-Euclidean domains, and applications of group representation theory and non-commutative harmonic analysis, as well as deep learning based source compression. He has done internships at Google Deepmind (working with Geoff Hinton) and OpenAI. He received the 2014 University of Amsterdam thesis prize, a Google PhD Fellowship, ICLR 2018 best paper award for “Spherical CNNs”, and was named one of 35 innovators under 35 in Europe by MIT in 2018.
More from the Same Authors
-
2020 Workshop: Machine Learning for Structural Biology »
Raphael Townshend · Stephan Eismann · Ron Dror · Ellen Zhong · Namrata Anand · John Ingraham · Wouter Boomsma · Sergey Ovchinnikov · Roshan Rao · Per Greisen · Rachel Kolodny · Bonnie Berger -
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 Poster: SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks »
Fabian Fuchs · Daniel E Worrall · Volker Fischer · Max Welling -
2020 Poster: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Oral: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Poster: The Convolution Exponential and Generalized Sylvester Flows »
Emiel Hoogeboom · Victor Garcia Satorras · Jakub Tomczak · Max Welling -
2020 Poster: Bayesian Bits: Unifying Quantization and Pruning »
Mart van Baalen · Christos Louizos · Markus Nagel · Rana Ali Amjad · Ying Wang · Tijmen Blankevoort · Max Welling -
2020 Poster: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Spotlight: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Poster: MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning »
Elise van der Pol · Daniel E Worrall · Herke van Hoof · Frans Oliehoek · Max Welling -
2020 Tutorial: (Track2) Equivariant Networks Q&A »
Risi Kondor · Taco Cohen -
2020 Tutorial: (Track2) Equivariant Networks »
Risi Kondor · Taco Cohen -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Invert to Learn to Invert »
Patrick Putzky · Max Welling -
2019 Poster: Deep Scale-spaces: Equivariance Over Scale »
Daniel Worrall · Max Welling -
2019 Poster: A General Theory of Equivariant CNNs on Homogeneous Spaces »
Taco Cohen · Mario Geiger · Maurice Weiler -
2019 Poster: General E(2)-Equivariant Steerable CNNs »
Maurice Weiler · Gabriele Cesa -
2019 Poster: Integer Discrete Flows and Lossless Compression »
Emiel Hoogeboom · Jorn Peters · Rianne van den Berg · Max Welling -
2019 Poster: The Functional Neural Process »
Christos Louizos · Xiahan Shi · Klamer Schutte · Max Welling -
2019 Poster: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Zeynep Akata · Max Welling -
2019 Spotlight: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Max Welling · Zeynep Akata -
2019 Poster: Combinatorial Bayesian Optimization using the Graph Cartesian Product »
Changyong Oh · Jakub Tomczak · Efstratios Gavves · Max Welling -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: Graphical Generative Adversarial Networks »
Chongxuan LI · Max Welling · Jun Zhu · Bo Zhang -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Spotlight: Spherical convolutions and their application in molecular modelling »
Wouter Boomsma · Jes Frellsen -
2017 Poster: Spherical convolutions and their application in molecular modelling »
Wouter Boomsma · Jes Frellsen -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris M Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Bayesian dark knowledge »
Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling -
2015 Poster: Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference »
Ted Meeds · Max Welling -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Demonstration: Machine Learning in the Browser »
Ted Meeds · Remco Hendriks · Said Al Faraby · Magiel Bruntink · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2012 Poster: The Time-Marginalized Coalescent Prior for Hierarchical Clustering »
Levi Boyles · Max Welling -
2011 Poster: Statistical Tests for Optimization Efficiency »
Levi Boyles · Anoop Korattikara · Deva Ramanan · Max Welling -
2010 Poster: On Herding and the Perceptron Cycling Theorem »
Andrew E Gelfand · Yutian Chen · Laurens van der Maaten · Max Welling -
2008 Session: Oral session 10: Nonparametric Processes, Scene Processing and Image Statistics »
Max Welling -
2008 Poster: Asynchronous Distributed Learning of Topic Models »
Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Spotlight: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Poster: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2006 Poster: Structure Learning in Markov Random Fields »
Sridevi Parise · Max Welling -
2006 Poster: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Spotlight: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling