Timezone: »
Poster
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik Kingma · Prafulla Dhariwal
Flow-based generative models are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using invertible 1x1 convolution. Using our method we demonstrate a significant improvement in log-likelihood and qualitative sample quality. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient synthesis of large and subjectively realistic-looking images.
Author Information
Diederik Kingma (Google)
Prafulla Dhariwal (OpenAI)
More from the Same Authors
-
2021 Spotlight: Diffusion Models Beat GANs on Image Synthesis »
Prafulla Dhariwal · Alexander Nichol -
2022 : On Distillation of Guided Diffusion Models »
Chenlin Meng · Ruiqi Gao · Diederik Kingma · Stefano Ermon · Jonathan Ho · Tim Salimans -
2023 Poster: Understanding Diffusion Objectives as the ELBO with Data Augmentation »
Diederik Kingma · Ruiqi Gao -
2023 Oral: Understanding Diffusion Objectives as the ELBO with Data Augmentation »
Diederik Kingma · Ruiqi Gao -
2021 Poster: Diffusion Models Beat GANs on Image Synthesis »
Prafulla Dhariwal · Alexander Nichol -
2021 Poster: Variational Diffusion Models »
Diederik Kingma · Tim Salimans · Ben Poole · Jonathan Ho -
2020 Poster: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Spotlight: ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA »
Ilyes Khemakhem · Ricardo Monti · Diederik Kingma · Aapo Hyvarinen -
2020 Poster: Language Models are Few-Shot Learners »
Tom B Brown · Benjamin Mann · Nick Ryder · Melanie Subbiah · Jared Kaplan · Prafulla Dhariwal · Arvind Neelakantan · Pranav Shyam · Girish Sastry · Amanda Askell · Sandhini Agarwal · Ariel Herbert-Voss · Gretchen M Krueger · Tom Henighan · Rewon Child · Aditya Ramesh · Daniel Ziegler · Jeffrey Wu · Clemens Winter · Chris Hesse · Mark Chen · Eric Sigler · Mateusz Litwin · Scott Gray · Benjamin Chess · Jack Clark · Christopher Berner · Sam McCandlish · Alec Radford · Ilya Sutskever · Dario Amodei -
2020 Oral: Language Models are Few-Shot Learners »
Tom B Brown · Benjamin Mann · Nick Ryder · Melanie Subbiah · Jared Kaplan · Prafulla Dhariwal · Arvind Neelakantan · Pranav Shyam · Girish Sastry · Amanda Askell · Sandhini Agarwal · Ariel Herbert-Voss · Gretchen M Krueger · Tom Henighan · Rewon Child · Aditya Ramesh · Daniel Ziegler · Jeffrey Wu · Clemens Winter · Chris Hesse · Mark Chen · Eric Sigler · Mateusz Litwin · Scott Gray · Benjamin Chess · Jack Clark · Christopher Berner · Sam McCandlish · Alec Radford · Ilya Sutskever · Dario Amodei -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Oral: Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks »
Tim Salimans · Diederik Kingma -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2015 : Variational Auto-Encoders and Extensions »
Diederik Kingma -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2010 Poster: Regularized estimation of image statistics by Score Matching »
Diederik Kingma · Yann LeCun