Timezone: »
While recent developments in autonomous vehicle (AV) technology highlight substantial progress, we lack tools for rigorous and scalable testing. Real-world testing, the de facto evaluation environment, places the public in danger, and, due to the rare nature of accidents, will require billions of miles in order to statistically validate performance claims. We implement a simulation framework that can test an entire modern autonomous driving system, including, in particular, systems that employ deep-learning perception and control algorithms. Using adaptive importance-sampling methods to accelerate rare-event probability evaluation, we estimate the probability of an accident under a base distribution governing standard traffic behavior. We demonstrate our framework on a highway scenario, accelerating system evaluation by 2-20 times over naive Monte Carlo sampling methods and 10-300P times (where P is the number of processors) over real-world testing.
Author Information
Matthew O'Kelly (University of Pennsylvania)
Aman Sinha (Stanford University)
Hongseok Namkoong (Stanford University)
Russ Tedrake (MIT)
John Duchi (Stanford)
More from the Same Authors
-
2020 : Paper 52: Distributionally Robust Online Adaptation via Offline Population Synthesis »
Aman Sinha · Matthew O'Kelly · Hongrui Zheng -
2021 : Private Confidence Sets »
Karan Chadha · John Duchi · Rohith Kuditipudi -
2021 : Robust fine-tuning of zero-shot models »
Mitchell Wortsman · Gabriel Ilharco · Jong Wook Kim · Mike Li · Hanna Hajishirzi · Ali Farhadi · Hongseok Namkoong · Ludwig Schmidt -
2022 : adaStar: A Method for Adapting to Interpolation »
Gary Cheng · John Duchi -
2022 Workshop: OPT 2022: Optimization for Machine Learning »
Courtney Paquette · Sebastian Stich · Quanquan Gu · Cristóbal Guzmán · John Duchi -
2022 Poster: Globally Convergent Policy Search for Output Estimation »
Jack Umenberger · Max Simchowitz · Juan Perdomo · Kaiqing Zhang · Russ Tedrake -
2022 Poster: Subspace Recovery from Heterogeneous Data with Non-isotropic Noise »
John Duchi · Vitaly Feldman · Lunjia Hu · Kunal Talwar -
2021 Poster: Adapting to function difficulty and growth conditions in private optimization »
Hilal Asi · Daniel Levy · John Duchi -
2021 Poster: Evaluating model performance under worst-case subpopulations »
Mike Li · Hongseok Namkoong · Shangzhou Xia -
2020 : Contributed Talk 7: Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning »
Samuel Daulton · Hongseok Namkoong -
2020 Poster: Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems »
Aman Sinha · Matthew O'Kelly · Russ Tedrake · John Duchi -
2020 Poster: Conic Descent and its Application to Memory-efficient Optimization over Positive Semidefinite Matrices »
John Duchi · Oliver Hinder · Andrew Naber · Yinyu Ye -
2020 Poster: Large-Scale Methods for Distributionally Robust Optimization »
Daniel Levy · Yair Carmon · John Duchi · Aaron Sidford -
2020 Poster: Minibatch Stochastic Approximate Proximal Point Methods »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2020 Spotlight: Minibatch Stochastic Approximate Proximal Point Methods »
Hilal Asi · Karan Chadha · Gary Cheng · John Duchi -
2020 Poster: Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding »
Hongseok Namkoong · Ramtin Keramati · Steve Yadlowsky · Emma Brunskill -
2020 Poster: Instance-optimality in differential privacy via approximate inverse sensitivity mechanisms »
Hilal Asi · John Duchi -
2019 : Coffee break, posters, and 1-on-1 discussions »
Yangyi Lu · Daniel Chen · Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Julius von Kügelgen · Niranjani Prasad · Paramveer Dhillon · Yunzong Xu · Yixin Wang · Alexander Markham · David Rohde · Rahul Singh · Zichen Zhang · Negar Hassanpour · Ankit Sharma · Ciarán Lee · Jean Pouget-Abadie · Jesse Krijthe · Divyat Mahajan · Nan Rosemary Ke · Peter Wirnsberger · Vira Semenova · Dmytro Mykhaylov · Dennis Shen · Kenta Takatsu · Liyang Sun · Jeremy Yang · Alexander Franks · Pak Kan Wong · Tauhid Zaman · Shira Mitchell · min kyoung kang · Qi Yang -
2019 : Poster Spotlights »
Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Yuta Saito · Paramveer Dhillon · Alexander Markham -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Demonstration: F1/10: An open-source 1/10th scale platform for autonomous racing and reinforcement learning »
Matthew O'Kelly · Dhruv Karthik · Hongrui Zheng · Joseph Auckley · Siddharth Singh · Shashank D Prasad · Kim Luong · Matthew R Lebermann · Rahul Mangharam -
2019 Poster: Unlabeled Data Improves Adversarial Robustness »
Yair Carmon · Aditi Raghunathan · Ludwig Schmidt · John Duchi · Percy Liang -
2019 Poster: Necessary and Sufficient Geometries for Gradient Methods »
Daniel Levy · John Duchi -
2019 Oral: Necessary and Sufficient Geometries for Gradient Methods »
Daniel Levy · John Duchi -
2018 Poster: Analysis of Krylov Subspace Solutions of Regularized Non-Convex Quadratic Problems »
Yair Carmon · John Duchi -
2018 Oral: Analysis of Krylov Subspace Solutions of Regularized Non-Convex Quadratic Problems »
Yair Carmon · John Duchi -
2018 Poster: Generalizing to Unseen Domains via Adversarial Data Augmentation »
Riccardo Volpi · Hongseok Namkoong · Ozan Sener · John Duchi · Vittorio Murino · Silvio Savarese -
2017 : Poster Spotlights I »
Taesik Na · Yang Song · Aman Sinha · Richard Shin · Qiuyuan Huang · Nina Narodytska · Matt Staib · Kexin Pei · Fnu Suya · Amirata Ghorbani · Jacob Buckman · Matthias Hein · Huan Zhang · Yanjun Qi · Yuan Tian · Min Du · Dimitris Tsipras -
2017 Poster: Variance-based Regularization with Convex Objectives »
Hongseok Namkoong · John Duchi -
2017 Oral: Variance-based Regularization with Convex Objectives »
Hongseok Namkoong · John Duchi -
2017 Poster: Unsupervised Transformation Learning via Convex Relaxations »
Tatsunori Hashimoto · Percy Liang · John Duchi -
2016 Poster: Local Minimax Complexity of Stochastic Convex Optimization »
sabyasachi chatterjee · John Duchi · John Lafferty · Yuancheng Zhu -
2016 Poster: Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences »
Hongseok Namkoong · John Duchi -
2016 Poster: Learning Kernels with Random Features »
Aman Sinha · John Duchi -
2015 Poster: Asynchronous stochastic convex optimization: the noise is in the noise and SGD don't care »
Sorathan Chaturapruek · John Duchi · Christopher Ré -
2013 Poster: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Oral: Information-theoretic lower bounds for distributed statistical estimation with communication constraints »
Yuchen Zhang · John Duchi · Michael Jordan · Martin J Wainwright -
2013 Poster: Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation »
John Duchi · Martin J Wainwright · Michael Jordan -
2013 Poster: Estimation, Optimization, and Parallelism when Data is Sparse »
John Duchi · Michael Jordan · Brendan McMahan -
2012 Workshop: Big Learning : Algorithms, Systems, and Tools »
Sameer Singh · John Duchi · Yucheng Low · Joseph E Gonzalez -
2012 Poster: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Communication-Efficient Algorithms for Statistical Optimization »
Yuchen Zhang · John Duchi · Martin J Wainwright -
2012 Oral: Privacy Aware Learning »
John Duchi · Michael Jordan · Martin J Wainwright -
2012 Poster: Finite Sample Convergence Rates of Zero-Order Stochastic Optimization Methods »
John Duchi · Michael Jordan · Martin J Wainwright · Andre Wibisono -
2011 Poster: Distributed Delayed Stochastic Optimization »
Alekh Agarwal · John Duchi -
2010 Workshop: Learning on Cores, Clusters, and Clouds »
Alekh Agarwal · Lawrence Cayton · Ofer Dekel · John Duchi · John Langford -
2010 Spotlight: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2010 Poster: Distributed Dual Averaging In Networks »
John Duchi · Alekh Agarwal · Martin J Wainwright -
2009 Poster: Efficient Learning using Forward-Backward Splitting »
John Duchi · Yoram Singer -
2009 Oral: Efficient Learning using Forward-Backward Splitting »
John Duchi · Yoram Singer -
2006 Poster: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller -
2006 Spotlight: Using Combinatorial Optimization within Max-Product Belief Propagation »
John Duchi · Danny Tarlow · Gal Elidan · Daphne Koller