Timezone: »
Deep reinforcement learning could be used to learn dexterous robotic policies but it is challenging to transfer them to new robots with vastly different hardware properties. It is also prohibitively expensive to learn a new policy from scratch for each robot hardware due to the high sample complexity of modern state-of-the-art algorithms. We propose a novel approach called Hardware Conditioned Policies where we train a universal policy conditioned on a vector representation of robot hardware. We considered robots in simulation with varied dynamics, kinematic structure, kinematic lengths and degrees-of-freedom. First, we use the kinematic structure directly as the hardware encoding and show great zero-shot transfer to completely novel robots not seen during training. For robots with lower zero-shot success rate, we also demonstrate that fine-tuning the policy network is significantly more sample-efficient than training a model from scratch. In tasks where knowing the agent dynamics is important for success, we learn an embedding for robot hardware and show that policies conditioned on the encoding of hardware tend to generalize and transfer well. Videos of experiments are available at: https://sites.google.com/view/robot-transfer-hcp.
Author Information
Tao Chen (Carnegie Mellon University)
Adithyavairavan Murali (Carnegie Mellon University Robotics Institute)
Abhinav Gupta (Facebook AI Research/CMU)
More from the Same Authors
-
2021 : RB2: Robotic Manipulation Benchmarking with a Twist »
Sudeep Dasari · Jianren Wang · Joyce Hong · Shikhar Bahl · Yixin Lin · Austin Wang · Abitha Thankaraj · Karanbir Chahal · Berk Calli · Saurabh Gupta · David Held · Lerrel Pinto · Deepak Pathak · Vikash Kumar · Abhinav Gupta -
2021 : KitchenShift: Evaluating Zero-Shot Generalization of Imitation-Based Policy Learning Under Domain Shifts »
Eliot Xing · Abhinav Gupta · Samantha Powers · Victoria Dean -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Offline Reinforcement Learning on Real Robot with Realistic Data Sources »
Gaoyue Zhou · Liyiming Ke · Siddhartha Srinivasa · Abhinav Gupta · Aravind Rajeswaran · Vikash Kumar -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Offline Reinforcement Learning on Real Robot with Realistic Data Sources »
Gaoyue Zhou · Liyiming Ke · Siddhartha Srinivasa · Abhinav Gupta · Aravind Rajeswaran · Vikash Kumar -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 : Train Offline, Test Online: A Real Robot Learning Benchmark »
Gaoyue Zhou · Victoria Dean · Mohan Kumar Srirama · Aravind Rajeswaran · Jyothish Pari · Kyle Hatch · Aryan Jain · Tianhe Yu · Pieter Abbeel · Lerrel Pinto · Chelsea Finn · Abhinav Gupta -
2022 Poster: Learning State-Aware Visual Representations from Audible Interactions »
Himangi Mittal · Pedro Morgado · Unnat Jain · Abhinav Gupta -
2021 Oral: Interesting Object, Curious Agent: Learning Task-Agnostic Exploration »
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta -
2021 Poster: No RL, No Simulation: Learning to Navigate without Navigating »
Meera Hahn · Devendra Singh Chaplot · Shubham Tulsiani · Mustafa Mukadam · James Rehg · Abhinav Gupta -
2021 Poster: Interesting Object, Curious Agent: Learning Task-Agnostic Exploration »
Simone Parisi · Victoria Dean · Deepak Pathak · Abhinav Gupta -
2020 : QA: Abhinav Gupta »
Abhinav Gupta -
2020 : Invited Talk: Abhinav Gupta »
Abhinav Gupta -
2020 Poster: Neural Dynamic Policies for End-to-End Sensorimotor Learning »
Shikhar Bahl · Mustafa Mukadam · Abhinav Gupta · Deepak Pathak -
2020 Poster: Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases »
Senthil Purushwalkam · Abhinav Gupta -
2020 Spotlight: Neural Dynamic Policies for End-to-End Sensorimotor Learning »
Shikhar Bahl · Mustafa Mukadam · Abhinav Gupta · Deepak Pathak -
2020 Poster: See, Hear, Explore: Curiosity via Audio-Visual Association »
Victoria Dean · Shubham Tulsiani · Abhinav Gupta -
2020 Poster: Object Goal Navigation using Goal-Oriented Semantic Exploration »
Devendra Singh Chaplot · Dhiraj Prakashchand Gandhi · Abhinav Gupta · Russ Salakhutdinov -
2019 Poster: Third-Person Visual Imitation Learning via Decoupled Hierarchical Controller »
Pratyusha Sharma · Deepak Pathak · Abhinav Gupta -
2018 Poster: Beyond Grids: Learning Graph Representations for Visual Recognition »
Yin Li · Abhinav Gupta -
2018 Poster: Robot Learning in Homes: Improving Generalization and Reducing Dataset Bias »
Abhinav Gupta · Adithyavairavan Murali · Dhiraj Prakashchand Gandhi · Lerrel Pinto -
2016 : Invited Talk - Self Supervised Learning of Visual Representations »
Abhinav Gupta -
2016 : Abhinav Gupta »
Abhinav Gupta -
2016 : Abhinav Gupta »
Abhinav Gupta -
2013 Poster: Mid-level Visual Element Discovery as Discriminative Mode Seeking »
Carl Doersch · Abhinav Gupta · Alexei A Efros -
2010 Poster: Estimating Spatial Layout of Rooms using Volumetric Reasoning about Objects and Surfaces »
David C Lee · Abhinav Gupta · Martial Hebert · Takeo Kanade -
2008 Poster: A "Shape Aware" Model for semi-supervised Learning of Objects and its Context »
Abhinav Gupta · Jianbo Shi · Larry Davis -
2008 Spotlight: A "Shape Aware'' Model for semi-supervised Learning of Objects and its Context »
Abhinav Gupta · Jianbo Shi · Larry Davis