Timezone: »
Poster
Learning SMaLL Predictors
Vikas Garg · Ofer Dekel · Lin Xiao
We introduce a new framework for learning in severely resource-constrained settings. Our technique delicately amalgamates the representational richness of multiple linear predictors with the sparsity of Boolean relaxations, and thereby yields classifiers that are compact, interpretable, and accurate. We provide a rigorous formalism of the learning problem, and establish fast convergence of the ensuing algorithm via relaxation to a minimax saddle point objective. We supplement the theoretical foundations of our work with an extensive empirical evaluation.
Author Information
Vikas Garg (MIT)
Ofer Dekel (Microsoft Research)
Lin Xiao (Microsoft Research)
More from the Same Authors
-
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2023 Poster: Compositional Sculpting of Iterative Generative Processes »
Timur Garipov · Sebastiaan De Peuter · Ge Yang · Vikas Garg · Samuel Kaski · Tommi Jaakkola -
2023 Poster: Going beyond persistent homology using persistent homology »
Johanna Immonen · Amauri Souza · Vikas Garg -
2022 Spotlight: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 : Panel »
Vikas Garg · Pan Li · Srijan Kumar · Emanuele Rossi · Shenyang Huang -
2022 : KeyNote 3 by Vikas Garg: Provably Powerful Temporal Graph Networks »
Vikas Garg -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 Poster: Symmetry-induced Disentanglement on Graphs »
Giangiacomo Mercatali · Andre Freitas · Vikas Garg -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2019 Poster: Solving graph compression via optimal transport »
Vikas Garg · Tommi Jaakkola -
2019 Poster: Generative Models for Graph-Based Protein Design »
John Ingraham · Vikas Garg · Regina Barzilay · Tommi Jaakkola -
2019 Poster: Using Statistics to Automate Stochastic Optimization »
Hunter Lang · Lin Xiao · Pengchuan Zhang -
2019 Poster: A Stochastic Composite Gradient Method with Incremental Variance Reduction »
Junyu Zhang · Lin Xiao -
2019 Poster: Understanding the Role of Momentum in Stochastic Gradient Methods »
Igor Gitman · Hunter Lang · Pengchuan Zhang · Lin Xiao -
2019 Poster: Online Markov Decoding: Lower Bounds and Near-Optimal Approximation Algorithms »
Vikas Garg · Tamar Pichkhadze -
2019 Invited Talk: Test of Time: Dual Averaging Method for Regularized Stochastic Learning and Online Optimization »
Lin Xiao -
2018 Poster: Coupled Variational Bayes via Optimization Embedding »
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song -
2018 Poster: Supervising Unsupervised Learning »
Vikas Garg · Adam Kalai -
2018 Spotlight: Supervising Unsupervised Learning »
Vikas Garg · Adam Kalai -
2017 Poster: Online Learning with a Hint »
Ofer Dekel · arthur flajolet · Nika Haghtalab · Patrick Jaillet -
2017 Poster: Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes »
Jianshu Chen · Chong Wang · Lin Xiao · Ji He · Lihong Li · Li Deng -
2016 Poster: Learning Tree Structured Potential Games »
Vikas Garg · Tommi Jaakkola -
2015 Poster: End-to-end Learning of LDA by Mirror-Descent Back Propagation over a Deep Architecture »
Jianshu Chen · Ji He · Yelong Shen · Lin Xiao · Xiaodong He · Jianfeng Gao · Xinying Song · Li Deng -
2015 Poster: Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff »
Ofer Dekel · Ronen Eldan · Tomer Koren -
2015 Spotlight: Bandit Smooth Convex Optimization: Improving the Bias-Variance Tradeoff »
Ofer Dekel · Ronen Eldan · Tomer Koren -
2014 Poster: The Blinded Bandit: Learning with Adaptive Feedback »
Ofer Dekel · Elad Hazan · Tomer Koren -
2014 Poster: An Accelerated Proximal Coordinate Gradient Method »
Qihang Lin · Zhaosong Lu · Lin Xiao -
2013 Poster: Online Learning with Switching Costs and Other Adaptive Adversaries »
Nicolò Cesa-Bianchi · Ofer Dekel · Ohad Shamir -
2013 Session: Oral Session 8 »
Ofer Dekel -
2012 Session: Oral Session 3 »
Lin Xiao -
2010 Workshop: Learning on Cores, Clusters, and Clouds »
Alekh Agarwal · Lawrence Cayton · Ofer Dekel · John Duchi · John Langford -
2010 Session: Spotlights Session 4 »
Ofer Dekel -
2010 Session: Oral Session 4 »
Ofer Dekel -
2009 Poster: Distribution-Calibrated Hierarchical Classification »
Ofer Dekel -
2009 Poster: Dual Averaging Method for Regularized Stochastic Learning and Online Optimization »
Lin Xiao -
2008 Poster: From Online to Batch Learning with Cutoff-Averaging »
Ofer Dekel -
2006 Poster: Support Vector Machines on a Budget »
Ofer Dekel · Yoram Singer -
2006 Spotlight: Support Vector Machines on a Budget »
Ofer Dekel · Yoram Singer