Timezone: »
We introduce a theorem proving algorithm that uses practically no domain heuristics for guiding its connection-style proof search. Instead, it runs many Monte-Carlo simulations guided by reinforcement learning from previous proof attempts. We produce several versions of the prover, parameterized by different learning and guiding algorithms. The strongest version of the system is trained on a large corpus of mathematical problems and evaluated on previously unseen problems. The trained system solves within the same number of inferences over 40% more problems than a baseline prover, which is an unusually high improvement in this hard AI domain. To our knowledge this is the first time reinforcement learning has been convincingly applied to solving general mathematical problems on a large scale.
Author Information
Cezary Kaliszyk (Innsbruck University)
Josef Urban (Czech Technical University in Prague)
Henryk Michalewski (University of Warsaw, University of Oxford, deepsense.ai)
Miroslav Olšák (Charles University in Prague)
More from the Same Authors
-
2021 : Off-Policy Correction For Multi-Agent Reinforcement Learning »
Michał Zawalski · Błażej Osiński · Henryk Michalewski · Piotr Miłoś -
2022 : Reasoning and Abstraction as Challenges for AI »
Cezary Kaliszyk -
2021 Poster: Sparse is Enough in Scaling Transformers »
Sebastian Jaszczur · Aakanksha Chowdhery · Afroz Mohiuddin · LUKASZ KAISER · Wojciech Gajewski · Henryk Michalewski · Jonni Kanerva -
2021 Poster: Planning from Pixels in Environments with Combinatorially Hard Search Spaces »
Marco Bagatella · Miroslav Olšák · Michal Rolínek · Georg Martius -
2018 : Coffee Break and Poster Session I »
Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel -
2016 Poster: DeepMath - Deep Sequence Models for Premise Selection »
Geoffrey Irving · Christian Szegedy · Alexander Alemi · Niklas Een · Francois Chollet · Josef Urban