Timezone: »
Kleinberg (2002) stated three axioms that any clustering procedure should satisfy and showed there is no clustering procedure that simultaneously satisfies all three. One of these, called the consistency axiom, requires that when the data is modified in a helpful way, i.e. if points in the same cluster are made more similar and those in different ones made less similar, the algorithm should output the same clustering. To circumvent this impossibility result, research has focused on considering clustering procedures that have a clustering quality measure (or a cost) and showing that a modification of Kleinberg’s axioms that takes cost into account lead to feasible clustering procedures. In this work, we take a different approach, based on the observation that the consistency axiom fails to be satisfied when the “correct” number of clusters changes. We modify this axiom by making use of cost functions to determine the correct number of clusters, and require that consistency holds only if the number of clusters remains unchanged. We show that single linkage satisfies the modified axioms, and if the input is well-clusterable, some popular procedures such as k-means also satisfy the axioms, taking a step towards explaining the success of these objective functions for guiding the design of algorithms.
Author Information
Vincent Cohen-Addad (CNRS & Sorbonne Université)
Varun Kanade (University of Oxford)
Frederik Mallmann-Trenn (MIT)
More from the Same Authors
-
2021 Spotlight: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2021 Spotlight: Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces »
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn -
2022 : When are Local Queries Useful for Robust Learning? »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2022 : Scalable and Improved Algorithms for Individually Fair Clustering »
Mohammadhossein Bateni · Vincent Cohen-Addad · Alessandro Epasto · Silvio Lattanzi -
2022 Poster: Improved Coresets for Euclidean $k$-Means »
Vincent Cohen-Addad · Kasper Green Larsen · David Saulpic · Chris Schwiegelshohn · Omar Ali Sheikh-Omar -
2022 Poster: When are Local Queries Useful for Robust Learning? »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2022 Poster: Near-Optimal Correlation Clustering with Privacy »
Vincent Cohen-Addad · Chenglin Fan · Silvio Lattanzi · Slobodan Mitrovic · Ashkan Norouzi-Fard · Nikos Parotsidis · Jakub Tarnawski -
2022 Poster: Near-Optimal Private and Scalable $k$-Clustering »
Vincent Cohen-Addad · Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong -
2021 Poster: Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces »
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn -
2021 Poster: Parallel and Efficient Hierarchical k-Median Clustering »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2021 Poster: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2020 Poster: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2020 Spotlight: The Statistical Complexity of Early-Stopped Mirror Descent »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2020 Poster: Fast and Accurate $k$-means++ via Rejection Sampling »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2020 Poster: On the Power of Louvain in the Stochastic Block Model »
Vincent Cohen-Addad · Adrian Kosowski · Frederik Mallmann-Trenn · David Saulpic -
2019 Poster: Fully Dynamic Consistent Facility Location »
Vincent Cohen-Addad · Niklas Oskar D Hjuler · Nikos Parotsidis · David Saulpic · Chris Schwiegelshohn -
2019 Poster: Subquadratic High-Dimensional Hierarchical Clustering »
Amir Abboud · Vincent Cohen-Addad · Hussein Houdrouge -
2017 Poster: Hierarchical Clustering Beyond the Worst-Case »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn -
2017 Poster: From which world is your graph »
Cheng Li · Felix MF Wong · Zhenming Liu · Varun Kanade