Timezone: »
We consider the problem of finding anomalies in high-dimensional data using popular PCA based anomaly scores. The naive algorithms for computing these scores explicitly compute the PCA of the covariance matrix which uses space quadratic in the dimensionality of the data. We give the first streaming algorithms that use space that is linear or sublinear in the dimension. We prove general results showing that \emph{any} sketch of a matrix that satisfies a certain operator norm guarantee can be used to approximate these scores. We instantiate these results with powerful matrix sketching techniques such as Frequent Directions and random projections to derive efficient and practical algorithms for these problems, which we validate over real-world data sets. Our main technical contribution is to prove matrix perturbation inequalities for operators arising in the computation of these measures.
Author Information
Vatsal Sharan (Stanford University)
Parikshit Gopalan (VMware Research)
Udi Wieder (VMware Research)
More from the Same Authors
-
2019 : Vatsal Sharan, "Sample Amplification: Increasing Dataset Size even when Learning is Impossible" »
Vatsal Sharan -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: PIDForest: Anomaly Detection via Partial Identification »
Parikshit Gopalan · Vatsal Sharan · Udi Wieder -
2019 Spotlight: PIDForest: Anomaly Detection via Partial Identification »
Parikshit Gopalan · Vatsal Sharan · Udi Wieder -
2018 Poster: A Spectral View of Adversarially Robust Features »
Shivam Garg · Vatsal Sharan · Brian Zhang · Gregory Valiant -
2018 Spotlight: A Spectral View of Adversarially Robust Features »
Shivam Garg · Vatsal Sharan · Brian Zhang · Gregory Valiant -
2017 Poster: Learning Overcomplete HMMs »
Vatsal Sharan · Sham Kakade · Percy Liang · Gregory Valiant