Timezone: »
Electronic health records provide a rich source of data for machine learning methods to learn dynamic treatment responses over time. However, any direct estimation is hampered by the presence of time-dependent confounding, where actions taken are dependent on time-varying variables related to the outcome of interest. Drawing inspiration from marginal structural models, a class of methods in epidemiology which use propensity weighting to adjust for time-dependent confounders, we introduce the Recurrent Marginal Structural Network - a sequence-to-sequence architecture for forecasting a patient's expected response to a series of planned treatments. Using simulations of a state-of-the-art pharmacokinetic-pharmacodynamic (PK-PD) model of tumor growth, we demonstrate the ability of our network to accurately learn unbiased treatment responses from observational data – even under changes in the policy of treatment assignments – and performance gains over benchmarks.
Author Information
Bryan Lim (University of Oxford)
Ahmed Alaa (UCLA)
Mihaela van der Schaar (UCLA and Oxford University)
More from the Same Authors
-
2023 Poster: Aligning Synthetic Medical Images with Clinical Knowledge using Human Feedback »
Shenghuan Sun · Gregory Goldgof · Atul Butte · Ahmed Alaa -
2023 Poster: Conformal Meta-learners for Predictive Inference of Individual Treatment Effects »
Ahmed Alaa · Zaid Ahmad · Mark van der Laan -
2022 : Closing Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 : Panel Discussion »
Cheng Zhang · Mihaela van der Schaar · Ilya Shpitser · Aapo Hyvarinen · Yoshua Bengio · Bernhard Schölkopf -
2022 : Opening Remarks »
Cheng Zhang · Mihaela van der Schaar -
2022 Poster: ETAB: A Benchmark Suite for Visual Representation Learning in Echocardiography »
Ahmed Alaa · Anthony Philippakis · David Sontag -
2021 : Invited talk #5: Mihaela van der Schaar »
Mihaela van der Schaar -
2021 Poster: Conformal Time-series Forecasting »
Kamile Stankeviciute · Ahmed Alaa · Mihaela van der Schaar -
2020 : Q&A for invited speaker, Mihaela van der Schaar »
Mihaela van der Schaar -
2020 : Interpretable AutoML: Powering the machine learning revolution in healthcare in the era of Covid-19 and beyond »
Mihaela van der Schaar -
2019 Poster: Attentive State-Space Modeling of Disease Progression »
Ahmed Alaa · Mihaela van der Schaar -
2019 Poster: Demystifying Black-box Models with Symbolic Metamodels »
Ahmed Alaa · Mihaela van der Schaar -
2019 Poster: Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate »
James Jordon · Jinsung Yoon · Mihaela van der Schaar -
2019 Poster: Conditional Independence Testing using Generative Adversarial Networks »
Alexis Bellot · Mihaela van der Schaar -
2019 Spotlight: Conditional Independence Testing using Generative Adversarial Networks »
Alexis Bellot · Mihaela van der Schaar -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 Poster: DPSCREEN: Dynamic Personalized Screening »
Kartik Ahuja · William Zame · Mihaela van der Schaar -
2017 Poster: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed Alaa · Mihaela van der Schaar -
2017 Spotlight: Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks »
Ahmed Alaa · Mihaela van der Schaar -
2017 Poster: Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes »
Ahmed Alaa · Mihaela van der Schaar -
2016 Poster: Balancing Suspense and Surprise: Timely Decision Making with Endogenous Information Acquisition »
Ahmed Alaa · Mihaela van der Schaar