Timezone: »
Deep Neural Networks are powerful models that attained remarkable results on a variety of tasks. These models are shown to be extremely efficient when training and test data are drawn from the same distribution. However, it is not clear how a network will act when it is fed with an out-of-distribution example. In this work, we consider the problem of out-of-distribution detection in neural networks. We propose to use multiple semantic dense representations instead of sparse representation as the target label. Specifically, we propose to use several word representations obtained from different corpora or architectures as target labels. We evaluated the proposed model on computer vision, and speech commands detection tasks and compared it to previous methods. Results suggest that our method compares favorably with previous work. Besides, we present the efficiency of our approach for detecting wrongly classified and adversarial examples.
Author Information
Gabi Shalev (Dept. of Computer Science, Bar-Ilan University)
Yossi Adi (Bar Ilan University)
Joseph Keshet (Bar-Ilan University)
More from the Same Authors
-
2023 Poster: Simple and Controllable Music Generation »
Jade Copet · Felix Kreuk · Itai Gat · Tal Remez · Gabriel Synnaeve · Yossi Adi · Alexandre Defossez -
2023 Poster: Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale »
Matthew Le · Bowen Shi · Apoorv Vyas · Brian Karrer · Leda Sari · Yossi Adi · Vimal Manohar · Jay Mahadeokar · Wei-Ning Hsu -
2023 Poster: From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion »
Robin San Roman · Yossi Adi · Antoine Deleforge · Romain Serizel · Gabriel Synnaeve · Alexandre Defossez -
2023 Poster: Textually Pretrained Speech Language Models »
Michael Hassid · Tal Remez · Tu Anh Nguyen · Itai Gat · Alexis CONNEAU · Felix Kreuk · Jade Copet · Alexandre Defossez · Gabriel Synnaeve · Emmanuel Dupoux · Roy Schwartz · Yossi Adi -
2022 Poster: On the Importance of Gradient Norm in PAC-Bayesian Bounds »
Itai Gat · Yossi Adi · Alex Schwing · Tamir Hazan -
2018 : Coffee break + posters 1 »
Samuel Myer · Wei-Ning Hsu · Jialu Li · Monica Dinculescu · Lea Schönherr · Ehsan Hosseini-Asl · Skyler Seto · Oiwi Parker Jones · Imran Sheikh · Thomas Manzini · Yonatan Belinkov · Nadir Durrani · Alexander Amini · Johanna Hansen · Gabi Shalev · Jamin Shin · Paul Smolensky · Lisa Fan · Zining Zhu · Hamid Eghbal-zadeh · Benjamin Baer · Abelino Jimenez · Joao Felipe Santos · Jan Kremer · Erik McDermott · Andreas Krug · Tzeviya S Fuchs · Shuai Tang · Brandon Carter · David Gifford · Albert Zeyer · André Merboldt · Krishna Pillutla · Katherine Lee · Titouan Parcollet · Orhan Firat · Gautam Bhattacharya · JAHANGIR ALAM · Mirco Ravanelli -
2017 Poster: Houdini: Fooling Deep Structured Visual and Speech Recognition Models with Adversarial Examples »
Moustapha Cisse · Yossi Adi · Natalia Neverova · Joseph Keshet -
2013 Poster: Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions »
Tamir Hazan · Subhransu Maji · Joseph Keshet · Tommi Jaakkola -
2011 Poster: Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss »
David Mcallester · Joseph Keshet -
2011 Oral: Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss »
David Mcallester · Joseph Keshet -
2010 Poster: Direct Loss Minimization for Structured Prediction »
David A McAllester · Tamir Hazan · Joseph Keshet -
2008 Poster: Suppport Vector Machines with a Reject Option »
Yves Grandvalet · Joseph Keshet · Alain Rakotomamonjy · Stephane Canu