Timezone: »
Implicit feedback, such as user clicks, although abundant in online information service systems, does not provide substantial evidence on users' evaluation of system's output. Without proper modeling, such incomplete supervision inevitably misleads model estimation, especially in a bandit learning setting where the feedback is acquired on the fly. In this work, we perform contextual bandit learning with implicit feedback by modeling the feedback as a composition of user result examination and relevance judgment. Since users' examination behavior is unobserved, we introduce latent variables to model it. We perform Thompson sampling on top of variational Bayesian inference for arm selection and model update. Our upper regret bound analysis of the proposed algorithm proves its feasibility of learning from implicit feedback in a bandit setting; and extensive empirical evaluations on click logs collected from a major MOOC platform further demonstrate its learning effectiveness in practice.
Author Information
Yi Qi (Tsinghua University)
Qingyun Wu (University of Virginia)
Hongning Wang (University of Virginia)
Jie Tang (Tsinghua University)
Maosong Sun
More from the Same Authors
-
2021 : Graph Robustness Benchmark: Benchmarking the Adversarial Robustness of Graph Machine Learning »
Qinkai Zheng · Xu Zou · Yuxiao Dong · Yukuo Cen · Da Yin · Jiarong Xu · Yang Yang · Jie Tang -
2022 : Spectrum Guided Topology Augmentation for Graph Contrastive Learning »
Lu Lin · Jinghui Chen · Hongning Wang -
2022 Poster: Communication Efficient Distributed Learning for Kernelized Contextual Bandits »
Chuanhao Li · Huazheng Wang · Mengdi Wang · Hongning Wang -
2022 Poster: CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers »
Ming Ding · Wendi Zheng · Wenyi Hong · Jie Tang -
2022 Poster: Communication Efficient Federated Learning for Generalized Linear Bandits »
Chuanhao Li · Hongning Wang -
2021 : Invited talk 3 »
Jie Tang -
2021 Poster: Adaptive Diffusion in Graph Neural Networks »
Jialin Zhao · Yuxiao Dong · Ming Ding · Evgeny Kharlamov · Jie Tang -
2021 Poster: CogView: Mastering Text-to-Image Generation via Transformers »
Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang -
2021 Poster: UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis »
Zhu Zhang · Jianxin Ma · Chang Zhou · Rui Men · Zhikang Li · Ming Ding · Jie Tang · Jingren Zhou · Hongxia Yang -
2021 Poster: A Hierarchical Reinforcement Learning Based Optimization Framework for Large-scale Dynamic Pickup and Delivery Problems »
Yi Ma · Xiaotian Hao · Jianye Hao · Jiawen Lu · Xing Liu · Tong Xialiang · Mingxuan Yuan · Zhigang Li · Jie Tang · Zhaopeng Meng -
2020 Poster: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Oral: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Poster: A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices »
Jiezhong Qiu · Chi Wang · Ben Liao · Richard Peng · Jie Tang -
2020 Poster: CogLTX: Applying BERT to Long Texts »
Ming Ding · Chang Zhou · Hongxia Yang · Jie Tang -
2019 Poster: Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation »
Xueying Bai · Jian Guan · Hongning Wang