Timezone: »
Poster
Training Deep Models Faster with Robust, Approximate Importance Sampling
Tyler Johnson · Carlos Guestrin
In theory, importance sampling speeds up stochastic gradient algorithms for supervised learning by prioritizing training examples. In practice, the cost of computing importances greatly limits the impact of importance sampling. We propose a robust, approximate importance sampling procedure (RAIS) for stochastic gradient de- scent. By approximating the ideal sampling distribution using robust optimization, RAIS provides much of the benefit of exact importance sampling with drastically reduced overhead. Empirically, we find RAIS-SGD and standard SGD follow similar learning curves, but RAIS moves faster through these paths, achieving speed-ups of at least 20% and sometimes much more.
Author Information
Tyler Johnson (University of Washington)
Carlos Guestrin (University of Washington)
More from the Same Authors
-
2018 Poster: Learning to Optimize Tensor Programs »
Tianqi Chen · Lianmin Zheng · Eddie Yan · Ziheng Jiang · Thierry Moreau · Luis Ceze · Carlos Guestrin · Arvind Krishnamurthy -
2018 Spotlight: Learning to Optimize Tensor Programs »
Tianqi Chen · Lianmin Zheng · Eddie Yan · Ziheng Jiang · Thierry Moreau · Luis Ceze · Carlos Guestrin · Arvind Krishnamurthy -
2016 : Invited talk, Carlos Guestrin »
Carlos Guestrin -
2016 Poster: Unified Methods for Exploiting Piecewise Linear Structure in Convex Optimization »
Tyler Johnson · Carlos Guestrin -
2014 Poster: Divide-and-Conquer Learning by Anchoring a Conical Hull »
Tianyi Zhou · Jeffrey A Bilmes · Carlos Guestrin -
2012 Demonstration: GraphLab: A Framework For Machine Learning in the Cloud »
Yucheng Low · Haijie Gu · Carlos Guestrin -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Linear Submodular Bandits and their Application to Diversified Retrieval »
Yisong Yue · Carlos Guestrin -
2010 Poster: Evidence-Specific Structures for Rich Tractable CRFs »
Anton Chechetka · Carlos Guestrin -
2010 Poster: Inference with Multivariate Heavy-Tails in Linear Models »
Danny Bickson · Carlos Guestrin -
2009 Workshop: Learning with Orderings »
Tiberio Caetano · Carlos Guestrin · Jonathan Huang · Risi Kondor · Guy Lebanon · Marina Meila -
2009 Workshop: Large-Scale Machine Learning: Parallelism and Massive Datasets »
Alexander Gray · Arthur Gretton · Alexander Smola · Joseph E Gonzalez · Carlos Guestrin -
2009 Poster: Riffled Independence for Ranked Data »
Jonathan Huang · Carlos Guestrin -
2009 Spotlight: Riffled Independence for Ranked Data »
Jonathan Huang · Carlos Guestrin -
2007 Oral: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Poster: Efficient Inference forDistributions on Permutations »
Jonathan Huang · Carlos Guestrin · Leonidas Guibas -
2007 Spotlight: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Poster: Selecting Observations against Adversarial Objectives »
Andreas Krause · H. Brendan McMahan · Carlos Guestrin · Anupam Gupta -
2007 Poster: Efficient Principled Learning of Thin Junction Trees »
Anton Chechetka · Carlos Guestrin -
2006 Poster: Distributed Inference in Dynamical Systems »
Stanislav Funiak · Carlos Guestrin · Mark A Paskin · Rahul Sukthankar