Timezone: »
Machine understanding of complex images is a key goal of artificial intelligence. One challenge underlying this task is that visual scenes contain multiple inter-related objects, and that global context plays an important role in interpreting the scene. A natural modeling framework for capturing such effects is structured prediction, which optimizes over complex labels, while modeling within-label interactions. However, it is unclear what principles should guide the design of a structured prediction model that utilizes the power of deep learning components. Here we propose a design principle for such architectures that follows from a natural requirement of permutation invariance. We prove a necessary and sufficient characterization for architectures that follow this invariance, and discuss its implication on model design. Finally, we show that the resulting model achieves new state of the art results on the Visual Genome scene graph labeling benchmark, outperforming all recent approaches.
Author Information
Roei Herzig (Tel Aviv University)
Moshiko Raboh (Tel Aviv University)
Gal Chechik (NVIDIA, BIU)
Jonathan Berant (Tel Aviv University)
Amir Globerson (Tel Aviv University, Google)
Amir Globerson is senior lecturer at the School of Engineering and Computer Science at the Hebrew University. He received a PhD in computational neuroscience from the Hebrew University, and was a Rothschild postdoctoral fellow at MIT. He joined the Hebrew University in 2008. His research interests include graphical models and probabilistic inference, convex optimization, robust learning and natural language processing.
More from the Same Authors
-
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2022 : Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs »
Benjamin Fuhrer · Yuval Shpigelman · Chen Tessler · Shie Mannor · Gal Chechik · Eitan Zahavi · Gal Dalal -
2022 : SoftTreeMax: Policy Gradient with Tree Search »
Gal Dalal · Assaf Hallak · Shie Mannor · Gal Chechik -
2022 Spotlight: Lightning Talks 2A-4 »
Sarthak Mittal · Richard Grumitt · Zuoyu Yan · Lihao Wang · Dongsheng Wang · Alexander Korotin · Jiangxin Sun · Ankit Gupta · Vage Egiazarian · Tengfei Ma · Yi Zhou · Yi.shi Xu · Albert Gu · Biwei Dai · Chunyu Wang · Yoshua Bengio · Uros Seljak · Miaoge Li · Guillaume Lajoie · Yiqun Wang · Liangcai Gao · Lingxiao Li · Jonathan Berant · Huang Hu · Xiaoqing Zheng · Zhibin Duan · Hanjiang Lai · Evgeny Burnaev · Zhi Tang · Zhi Jin · Xuanjing Huang · Chaojie Wang · Yusu Wang · Jian-Fang Hu · Bo Chen · Chao Chen · Hao Zhou · Mingyuan Zhou -
2022 Spotlight: Diagonal State Spaces are as Effective as Structured State Spaces »
Ankit Gupta · Albert Gu · Jonathan Berant -
2022 : Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs »
Benjamin Fuhrer · Yuval Shpigelman · Chen Tessler · Shie Mannor · Gal Chechik · Eitan Zahavi · Gal Dalal -
2022 Poster: Diagonal State Spaces are as Effective as Structured State Spaces »
Ankit Gupta · Albert Gu · Jonathan Berant -
2022 Poster: Bringing Image Scene Structure to Video via Frame-Clip Consistency of Object Tokens »
Elad Ben Avraham · Roei Herzig · Karttikeya Mangalam · Amir Bar · Anna Rohrbach · Leonid Karlinsky · Trevor Darrell · Amir Globerson -
2022 Poster: Visual Prompting via Image Inpainting »
Amir Bar · Yossi Gandelsman · Trevor Darrell · Amir Globerson · Alexei Efros -
2022 Poster: Reinforcement Learning with a Terminator »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Shie Mannor · Uri Shalit · Gal Chechik · Assaf Hallak · Gal Dalal -
2022 Poster: FETA: Towards Specializing Foundational Models for Expert Task Applications »
Amit Alfassy · Assaf Arbelle · Oshri Halimi · Sivan Harary · Roei Herzig · Eli Schwartz · Rameswar Panda · Michele Dolfi · Christoph Auer · Peter Staar · Kate Saenko · Rogerio Feris · Leonid Karlinsky -
2021 Poster: A Theoretical Analysis of Fine-tuning with Linear Teachers »
Gal Shachaf · Alon Brutzkus · Amir Globerson -
2021 Poster: Personalized Federated Learning With Gaussian Processes »
Idan Achituve · Aviv Shamsian · Aviv Navon · Gal Chechik · Ethan Fetaya -
2021 Poster: Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction »
Gal Dalal · Assaf Hallak · Steven Dalton · iuri frosio · Shie Mannor · Gal Chechik -
2021 : CommonsenseQA 2.0: Exposing the Limits of AI through Gamification »
Alon Talmor · Ori Yoran · Ronan Le Bras · Chandra Bhagavatula · Yoav Goldberg · Yejin Choi · Jonathan Berant -
2020 Poster: Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge »
Alon Talmor · Oyvind Tafjord · Peter Clark · Yoav Goldberg · Jonathan Berant -
2020 Poster: Regularizing Towards Permutation Invariance In Recurrent Models »
Edo Cohen-Karlik · Avichai Ben David · Amir Globerson -
2020 Poster: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2020 Spotlight: Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge »
Alon Talmor · Oyvind Tafjord · Peter Clark · Yoav Goldberg · Jonathan Berant -
2020 Spotlight: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2018 Poster: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2018 Spotlight: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2017 Poster: Robust Conditional Probabilities »
Yoav Wald · Amir Globerson -
2016 : CV @ Scale Challenges »
Manohar Paluri · Gal Chechik -
2016 Workshop: Large Scale Computer Vision Systems »
Manohar Paluri · Lorenzo Torresani · Gal Chechik · Dario Garcia · Du Tran -
2016 Poster: Optimal Tagging with Markov Chain Optimization »
Nir Rosenfeld · Amir Globerson -
2014 Workshop: Analyzing the omics of the brain »
Michael Hawrylycz · Gal Chechik · Mark Reimers -
2012 Poster: Convergence Rate Analysis of MAP Coordinate Minimization Algorithms »
Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2011 Session: Spotlight Session 3 »
Amir Globerson -
2011 Session: Oral Session 3 »
Amir Globerson -
2011 Tutorial: Linear Programming Relaxations for Graphical Models »
Amir Globerson · Tommi Jaakkola -
2010 Spotlight: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Spotlight: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2010 Poster: More data means less inference: A pseudo-max approach to structured learning »
David Sontag · Ofer Meshi · Tommi Jaakkola · Amir Globerson -
2010 Poster: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2009 Workshop: Approximate Learning of Large Scale Graphical Models »
Russ Salakhutdinov · Amir Globerson · David Sontag -
2009 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Tomer Hertz · William S Noble · Yanjun Qi · Jean-Philippe Vert · Alexander Zien -
2009 Mini Symposium: Machine Learning in Computational Biology »
Yanjun Qi · Jean-Philippe Vert · Gal Chechik · Alexander Zien · Tomer Hertz · William S Noble -
2009 Poster: An LP View of the M-best MAP problem »
Menachem Fromer · Amir Globerson -
2009 Oral: An LP View of the M-Best MAP Problem »
Menachem Fromer · Amir Globerson -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio -
2008 Workshop: Approximate inference - how far have we come? »
Amir Globerson · David Sontag · Tommi Jaakkola -
2008 Workshop: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Mini Symposium: Machine Learning in Computational Biology »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch -
2008 Poster: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2008 Spotlight: Clusters and Coarse Partitions in LP Relaxations »
David Sontag · Amir Globerson · Tommi Jaakkola -
2007 Workshop: Machine Learning in Computational Biology (Part 2) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Workshop: Machine Learning in Computational Biology (Part 1) »
Gal Chechik · Christina Leslie · Quaid Morris · William S Noble · Gunnar Rätsch · Koji Tsuda -
2007 Poster: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2007 Spotlight: Convex Learning with Invariances »
Choon Hui Teo · Amir Globerson · Sam T Roweis · Alexander Smola -
2007 Poster: Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations »
Amir Globerson · Tommi Jaakkola -
2006 Workshop: New Problems and Methods in Computational Biology »
Gal Chechik · Quaid Morris · Koji Tsuda · Gunnar Rätsch · Christina Leslie · William S Noble -
2006 Talk: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Poster: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Poster: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller -
2006 Poster: Approximate inference using planar graph decomposition »
Amir Globerson · Tommi Jaakkola -
2006 Spotlight: Max-margin classification of incomplete data »
Gal Chechik · Geremy Heitz · Gal Elidan · Pieter Abbeel · Daphne Koller -
2006 Talk: Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Task »
Alexis Battle · Gal Chechik · Daphne Koller