Timezone: »
In this paper, we introduce an unsupervised learning approach to automatically dis- cover, summarize, and manipulate artistic styles from large collections of paintings. Our method is based on archetypal analysis, which is an unsupervised learning technique akin to sparse coding with a geometric interpretation. When applied to deep image representations from a data collection, it learns a dictionary of archetypal styles, which can be easily visualized. After training the model, the style of a new image, which is characterized by local statistics of deep visual features, is approximated by a sparse convex combination of archetypes. This allows us to interpret which archetypal styles are present in the input image, and in which proportion. Finally, our approach allows us to manipulate the coefficients of the latent archetypal decomposition, and achieve various special effects such as style enhancement, transfer, and interpolation between multiple archetypes.
Author Information
Daan Wynen (INRIA)
Cordelia Schmid (Inria / Google)
Julien Mairal (Inria)
More from the Same Authors
-
2021 Spotlight: Beyond Tikhonov: faster learning with self-concordant losses, via iterative regularization »
Gaspard Beugnot · Julien Mairal · Alessandro Rudi -
2022 Poster: Language Conditioned Spatial Relation Reasoning for 3D Object Grounding »
Shizhe Chen · Pierre-Louis Guhur · Makarand Tapaswi · Cordelia Schmid · Ivan Laptev -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Language Conditioned Spatial Relation Reasoning for 3D Object Grounding »
Shizhe Chen · Pierre-Louis Guhur · Makarand Tapaswi · Cordelia Schmid · Ivan Laptev -
2022 Poster: Non-Convex Bilevel Games with Critical Point Selection Maps »
Michael Arbel · Julien Mairal -
2022 Poster: Zero-Shot Video Question Answering via Frozen Bidirectional Language Models »
Antoine Yang · Antoine Miech · Josef Sivic · Ivan Laptev · Cordelia Schmid -
2021 Poster: Large-Scale Unsupervised Object Discovery »
Van Huy Vo · Elena Sizikova · Cordelia Schmid · Patrick Pérez · Jean Ponce -
2021 Poster: CCVS: Context-aware Controllable Video Synthesis »
Guillaume Le Moing · Jean Ponce · Cordelia Schmid -
2021 Poster: History Aware Multimodal Transformer for Vision-and-Language Navigation »
Shizhe Chen · Pierre-Louis Guhur · Cordelia Schmid · Ivan Laptev -
2021 Poster: A Trainable Spectral-Spatial Sparse Coding Model for Hyperspectral Image Restoration »
Theo Bodrito · Alexandre Zouaoui · Jocelyn Chanussot · Julien Mairal -
2021 Poster: Beyond Tikhonov: faster learning with self-concordant losses, via iterative regularization »
Gaspard Beugnot · Julien Mairal · Alessandro Rudi -
2021 Poster: Attention Bottlenecks for Multimodal Fusion »
Arsha Nagrani · Shan Yang · Anurag Arnab · Aren Jansen · Cordelia Schmid · Chen Sun -
2021 Poster: Differentiable rendering with perturbed optimizers »
Quentin Le Lidec · Ivan Laptev · Cordelia Schmid · Justin Carpentier -
2020 Poster: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments »
Mathilde Caron · Ishan Misra · Julien Mairal · Priya Goyal · Piotr Bojanowski · Armand Joulin -
2020 Poster: A Flexible Framework for Designing Trainable Priors with Adaptive Smoothing and Game Encoding »
Bruno Lecouat · Jean Ponce · Julien Mairal -
2020 : Discussion Panel: Hugo Larochelle, Finale Doshi-Velez, Devi Parikh, Marc Deisenroth, Julien Mairal, Katja Hofmann, Phillip Isola, and Michael Bowling »
Hugo Larochelle · Finale Doshi-Velez · Marc Deisenroth · Devi Parikh · Julien Mairal · Katja Hofmann · Phillip Isola · Michael Bowling -
2019 Poster: On the Inductive Bias of Neural Tangent Kernels »
Alberto Bietti · Julien Mairal -
2019 Poster: Recurrent Kernel Networks »
Dexiong Chen · Laurent Jacob · Julien Mairal -
2019 Poster: A Generic Acceleration Framework for Stochastic Composite Optimization »
Andrei Kulunchakov · Julien Mairal -
2019 Poster: Adaptive Density Estimation for Generative Models »
Thomas Lucas · Konstantin Shmelkov · Karteek Alahari · Cordelia Schmid · Jakob Verbeek -
2019 Spotlight: Adaptive Density Estimation for Generative Models »
Thomas Lucas · Konstantin Shmelkov · Karteek Alahari · Cordelia Schmid · Jakob Verbeek -
2018 Poster: A flexible model for training action localization with varying levels of supervision »
Guilhem Chéron · Jean-Baptiste Alayrac · Ivan Laptev · Cordelia Schmid -
2017 Poster: Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure »
Alberto Bietti · Julien Mairal -
2017 Spotlight: Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure »
Alberto Bietti · Julien Mairal -
2017 Poster: Learning Neural Representations of Human Cognition across Many fMRI Studies »
Arthur Mensch · Julien Mairal · Danilo Bzdok · Bertrand Thirion · Gael Varoquaux -
2017 Poster: Invariance and Stability of Deep Convolutional Representations »
Alberto Bietti · Julien Mairal -
2016 : Invited Talk - Recent Progress in Spatio-Temporal Action Location »
Cordelia Schmid -
2016 Poster: End-to-End Kernel Learning with Supervised Convolutional Kernel Networks »
Julien Mairal -
2016 Poster: MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild »
Gregory Rogez · Cordelia Schmid -
2015 Poster: A Universal Catalyst for First-Order Optimization »
Hongzhou Lin · Julien Mairal · Zaid Harchaoui -
2014 Poster: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2014 Spotlight: Convolutional Kernel Networks »
Julien Mairal · Piotr Koniusz · Zaid Harchaoui · Cordelia Schmid -
2013 Poster: Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization »
Julien Mairal -
2010 Poster: Network Flow Algorithms for Structured Sparsity »
Julien Mairal · Rodolphe Jenatton · Guillaume R Obozinski · Francis Bach -
2008 Poster: SDL: Supervised Dictionary Learning »
Julien Mairal · Francis Bach · Jean A Ponce · Guillermo Sapiro · Andrew Zisserman