Timezone: »
Poster
L4: Practical loss-based stepsize adaptation for deep learning
Michal Rolinek · Georg Martius
We propose a stepsize adaptation scheme for stochastic gradient descent. It operates directly with the loss function and rescales the gradient in order to make fixed predicted progress on the loss. We demonstrate its capabilities by conclusively improving the performance of Adam and Momentum optimizers. The enhanced optimizers with default hyperparameters consistently outperform their constant stepsize counterparts, even the best ones, without a measurable increase in computational cost. The performance is validated on multiple architectures including dense nets, CNNs, ResNets, and the recurrent Differential Neural Computer on classical datasets MNIST, fashion MNIST, CIFAR10 and others.
Author Information
Michal Rolinek (Max Planck Institute for Intelligent Systems)
Georg Martius (MPI for Intelligent Systems)
More from the Same Authors
-
2022 : Fifteen-minute Competition Overview Video »
Nico Gürtler · Georg Martius · Pavel Kolev · Sebastian Blaes · Manuel Wuethrich · Markus Wulfmeier · Cansu Sancaktar · Martin Riedmiller · Arthur Allshire · Bernhard Schölkopf · Annika Buchholz · Stefan Bauer -
2022 : Neural All-Pairs Shortest Path for Reinforcement Learning »
Cristina Pinneri · Georg Martius · Andreas Krause -
2022 : Pink Noise Is All You Need: Colored Noise Exploration in Deep Reinforcement Learning »
Onno Eberhard · Jakob Hollenstein · Cristina Pinneri · Georg Martius -
2022 Spotlight: Embrace the Gap: VAEs Perform Independent Mechanism Analysis »
Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve -
2022 Competition: Real Robot Challenge III - Learning Dexterous Manipulation from Offline Data in the Real World »
Nico Gürtler · Georg Martius · Sebastian Blaes · Pavel Kolev · Cansu Sancaktar · Stefan Bauer · Manuel Wuethrich · Markus Wulfmeier · Martin Riedmiller · Arthur Allshire · Annika Buchholz · Bernhard Schölkopf -
2022 Poster: Curious Exploration via Structured World Models Yields Zero-Shot Object Manipulation »
Cansu Sancaktar · Sebastian Blaes · Georg Martius -
2022 Poster: Embrace the Gap: VAEs Perform Independent Mechanism Analysis »
Patrik Reizinger · Luigi Gresele · Jack Brady · Julius von Kügelgen · Dominik Zietlow · Bernhard Schölkopf · Georg Martius · Wieland Brendel · Michel Besserve -
2020 : Invited Talk (Michal Rolinek) »
Michal Rolinek -
2020 : Opening »
Marin Vlastelica Pogančić · Georg Martius -
2020 Workshop: Learning Meets Combinatorial Algorithms »
Marin Vlastelica · Jialin Song · Aaron Ferber · Brandon Amos · Georg Martius · Bistra Dilkina · Yisong Yue -
2019 Poster: Control What You Can: Intrinsically Motivated Task-Planning Agent »
Sebastian Blaes · Marin Vlastelica Pogančić · Jiajie Zhu · Georg Martius